000894606 001__ 894606
000894606 005__ 20210914122659.0
000894606 0247_ $$2doi$$a10.1021/acs.jcim.1c00558
000894606 0247_ $$2ISSN$$a0095-2338
000894606 0247_ $$2ISSN$$a1549-9596
000894606 0247_ $$2ISSN$$a1520-5142
000894606 0247_ $$2ISSN$$a(BIS
000894606 0247_ $$2ISSN$$a44.2004)
000894606 0247_ $$2ISSN$$a1549-960X
000894606 0247_ $$2Handle$$a2128/28569
000894606 0247_ $$2altmetric$$aaltmetric:111590864
000894606 0247_ $$2pmid$$apmid:34370479
000894606 0247_ $$2WOS$$aWOS:000688241800027
000894606 037__ $$aFZJ-2021-03307
000894606 082__ $$a540
000894606 1001_ $$0P:(DE-HGF)0$$aBecker, Daniel$$b0
000894606 245__ $$aF/G Region Rigidity is Inversely Correlated to Substrate Promiscuity of Human CYP Isoforms Involved in Metabolism
000894606 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2021
000894606 3367_ $$2DRIVER$$aarticle
000894606 3367_ $$2DataCite$$aOutput Types/Journal article
000894606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1629728071_26066
000894606 3367_ $$2BibTeX$$aARTICLE
000894606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894606 3367_ $$00$$2EndNote$$aJournal Article
000894606 520__ $$aOf 57 human cytochrome P450 (CYP) enzymes, 12 metabolize 90% of xenobiotics. To our knowledge, no study has addressed the relation between enzyme dynamics and substrate promiscuity for more than three CYPs. Here, we show by constraint dilution simulations with the Constraint Network Analysis for the 12 isoforms that structural rigidity of the F/G region is significantly inversely correlated to the enzymes’ substrate promiscuity. This highlights the functional importance of structural dynamics of the substrate tunnel.
000894606 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894606 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000894606 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x2
000894606 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x3
000894606 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894606 7001_ $$0P:(DE-HGF)0$$aBharatam, Prasad V.$$b1
000894606 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b2$$eCorresponding author
000894606 773__ $$0PERI:(DE-600)1491237-5$$a10.1021/acs.jcim.1c00558$$gp. acs.jcim.1c00558$$n8$$p4023–4030$$tJournal of chemical information and modeling$$v61$$x1549-960X$$y2021
000894606 8564_ $$uhttps://juser.fz-juelich.de/record/894606/files/CYP_FG_Region_final2.pdf$$yPublished on 2021-08-09. Available in OpenAccess from 2022-08-09.
000894606 909CO $$ooai:juser.fz-juelich.de:894606$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b2$$kFZJ
000894606 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894606 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000894606 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x2
000894606 9141_ $$y2021
000894606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894606 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM INF MODEL : 2019$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894606 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-05-04$$wger
000894606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894606 920__ $$lyes
000894606 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894606 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000894606 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000894606 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x3
000894606 980__ $$ajournal
000894606 980__ $$aVDB
000894606 980__ $$aUNRESTRICTED
000894606 980__ $$aI:(DE-Juel1)JSC-20090406
000894606 980__ $$aI:(DE-Juel1)NIC-20090406
000894606 980__ $$aI:(DE-Juel1)IBI-7-20200312
000894606 980__ $$aI:(DE-Juel1)IBG-4-20200403
000894606 9801_ $$aFullTexts