001     894620
005     20240708132718.0
024 7 _ |a 10.1016/j.ensm.2020.11.010
|2 doi
024 7 _ |a 2405-8289
|2 ISSN
024 7 _ |a 2405-8297
|2 ISSN
024 7 _ |a 2128/28817
|2 Handle
024 7 _ |a altmetric:94054721
|2 altmetric
024 7 _ |a WOS:000621356400006
|2 WOS
037 _ _ |a FZJ-2021-03317
082 _ _ |a 624
100 1 _ |a Hadouchi, Mohammed
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634645200_10502
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sodium-ion battery technology is one of the best alternative candidates to the lithium analogue due to the low cost and the abundance of sodium. Extensive research effort is dedicated to the development of low-cost and high-performance cathodes. Here, a new sodium-deficient NASICON material Na3.41£0.59FeV(PO4)3 is synthesized by a simple sol-gel method. This new material delivers high initial discharge capacity of 170 mAh g−1 in the voltage range of 1.5-4.4 V vs. Na+/Na, originating from the intercalation of about 3 Na+ per formula unit. Furthermore, when cycled in the range of 2.0-3.8 V vs. Na+/Na, excellent rate capability and outstanding cycle life are obtained. The remarkable electrochemical performances are attributed to the small volume change (2.36 %) during the sodium extraction through a single-phase mechanism proved by in situ X-ray diffraction (XRD). Refined XRD and 23Na solid-state Nuclear Magnetic Resonance (NMR) combined with Density functional theory (DFT) calculations reveal that the sodium extraction during charge process occurs preferably from Na2 sites. Moreover, this new cathode exhibits high sodium diffusion kinetics confirmed by Galvanostatic Intermittent Titration Technique (GITT). These findings highlight the beneficial use of non-stoichiometry in electrodes for batteries and provide rational design of high-performance cathode materials for sodium-ion batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yaqoob, Najma
|0 P:(DE-Juel1)164884
|b 1
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 2
|u fzj
700 1 _ |a Tang, Mingxue
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Jie
|0 P:(DE-Juel1)145655
|b 4
700 1 _ |a Sang, Pengfei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fu, Yongzhu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Huang, Yunhui
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ma, Jiwei
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.ensm.2020.11.010
|g Vol. 35, p. 192 - 202
|0 PERI:(DE-600)2841602-8
|p 192 - 202
|t Energy storage materials
|v 35
|y 2021
|x 2405-8297
856 4 _ |u https://juser.fz-juelich.de/record/894620/files/Marked%20Manuscript-R1.pdf
|y Published on 2020-11-10. Available in OpenAccess from 2022-11-10.
909 C O |o oai:juser.fz-juelich.de:894620
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174502
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-Juel1)145655
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ENERGY STORAGE MATER : 2019
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY STORAGE MATER : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21