001     894621
005     20240711085655.0
024 7 _ |a 10.1002/aenm.202100901
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/28818
|2 Handle
024 7 _ |a altmetric:106163449
|2 altmetric
024 7 _ |a WOS:000652107800001
|2 WOS
037 _ _ |a FZJ-2021-03318
082 _ _ |a 050
100 1 _ |a Voronina, Natalia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A New Approach to Stable Cationic and Anionic Redox Activity in O3‐Layered Cathode for Sodium‐Ion Batteries
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634645350_5090
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herein, stable cationic and anionic redox in an O3-type layered Na[Ni2/3Ru1/3]O2 cathode for sodium-ion batteries (SIBs) is revealed. Density functional theory (DFT) calculation shows that the electron density features change in density of state with mixing of delocalized valence states as well as localized deeper energy states of O(p), Ni(d), and Ru(d) for the highly desodiated Na1−x[Ni2/3Ru1/3]O2 electrode, revealing the covalent characteristic of the transition metal (TM)O and TMTM bonds in the charged system. These properties lead to cycling stability for 200 cycles, with ≈79% of the capacity retained at a rate of 1C (210 mA g−1). Operando X-ray diffraction, X-ray absorption spectroscopy, and DFT calculations reveal the reversible electrochemical activity of the Ni2+/Ni3+ and O2−/O1− redox reactions, which are sustainable throughout the cycles. In addition, no loss of oxygen from the crystal structure of Na[Ni2/3Ru1/3]O2 occurs according to differential electrochemical mass spectrometry. The findings provide additional insight into the complex mechanism of the oxygen redox activity of high-capacity O3-type cathode materials for SIBs, encouraging further studies on their development.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yaqoob, Najma
|0 P:(DE-Juel1)164884
|b 1
700 1 _ |a Kim, Hee Jae
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, Kug-Seung
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lim, Hee-Dae
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jung, Hun-Gi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 7
|e Corresponding author
700 1 _ |a Myung, Seung-Taek
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1002/aenm.202100901
|g Vol. 11, no. 25, p. 2100901 -
|0 PERI:(DE-600)2594556-7
|n 25
|p 2100901 -
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |u https://juser.fz-juelich.de/record/894621/files/aenm.202100901.pdf
|y Restricted
856 4 _ |y Published on 2021-05-19. Available in OpenAccess from 2022-05-19.
|u https://juser.fz-juelich.de/record/894621/files/AEM-Ru.pdf
909 C O |o oai:juser.fz-juelich.de:894621
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21