Home > Publications database > A New Approach to Stable Cationic and Anionic Redox Activity in O3‐Layered Cathode for Sodium‐Ion Batteries > print |
001 | 894621 | ||
005 | 20240711085655.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202100901 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 2128/28818 |2 Handle |
024 | 7 | _ | |a altmetric:106163449 |2 altmetric |
024 | 7 | _ | |a WOS:000652107800001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03318 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Voronina, Natalia |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A New Approach to Stable Cationic and Anionic Redox Activity in O3‐Layered Cathode for Sodium‐Ion Batteries |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1634645350_5090 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Herein, stable cationic and anionic redox in an O3-type layered Na[Ni2/3Ru1/3]O2 cathode for sodium-ion batteries (SIBs) is revealed. Density functional theory (DFT) calculation shows that the electron density features change in density of state with mixing of delocalized valence states as well as localized deeper energy states of O(p), Ni(d), and Ru(d) for the highly desodiated Na1−x[Ni2/3Ru1/3]O2 electrode, revealing the covalent characteristic of the transition metal (TM)O and TMTM bonds in the charged system. These properties lead to cycling stability for 200 cycles, with ≈79% of the capacity retained at a rate of 1C (210 mA g−1). Operando X-ray diffraction, X-ray absorption spectroscopy, and DFT calculations reveal the reversible electrochemical activity of the Ni2+/Ni3+ and O2−/O1− redox reactions, which are sustainable throughout the cycles. In addition, no loss of oxygen from the crystal structure of Na[Ni2/3Ru1/3]O2 occurs according to differential electrochemical mass spectrometry. The findings provide additional insight into the complex mechanism of the oxygen redox activity of high-capacity O3-type cathode materials for SIBs, encouraging further studies on their development. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Yaqoob, Najma |0 P:(DE-Juel1)164884 |b 1 |
700 | 1 | _ | |a Kim, Hee Jae |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Lee, Kug-Seung |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lim, Hee-Dae |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Jung, Hun-Gi |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 6 |
700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 7 |e Corresponding author |
700 | 1 | _ | |a Myung, Seung-Taek |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202100901 |g Vol. 11, no. 25, p. 2100901 - |0 PERI:(DE-600)2594556-7 |n 25 |p 2100901 - |t Advanced energy materials |v 11 |y 2021 |x 1614-6840 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894621/files/aenm.202100901.pdf |y Restricted |
856 | 4 | _ | |y Published on 2021-05-19. Available in OpenAccess from 2022-05-19. |u https://juser.fz-juelich.de/record/894621/files/AEM-Ru.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:894621 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)164884 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)161591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)174502 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|