001     894626
005     20240711085655.0
024 7 _ |a 10.1149/10301.1151ecst
|2 doi
024 7 _ |a 1938-5862
|2 ISSN
024 7 _ |a 1938-6737
|2 ISSN
024 7 _ |a 2151-2051
|2 ISSN
024 7 _ |a 2128/30330
|2 Handle
037 _ _ |a FZJ-2021-03323
082 _ _ |a 540
100 1 _ |a Abaza, Amira
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Fracture of Porous Ceramics: Application to the Mechanical Degradation of Solid Oxide Cell During Redox Cycling
260 _ _ |a Pennington, NJ
|c 2021
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642494677_20328
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A model based on the Phase Field approach has been developed to simulate the local fracture in porous electrode microstructures. The model capacity to predict the crack nucleation and propagation has been studied with theoretical considerations. For the model validation, micro-compression tests have been performed on porous YSZ micro-pillars. As expected, the compressive fracture strength has been found to decrease with the material porosity. Moreover, a transition in fracture mode has been detected from a brittle behavior toward a local damage when increasing the porosity. It has been shown that the model is able to reproduce correctly the experimental results. The validated model has been used to simulate the fracture of the YSZ backbone induced by the Ni re-oxidation in a typical Ni-YSZ cermet. The generation and localization of the micro-cracks have been discussed according to the degree of Ni re-oxidation and the local morphology of the electrode microstructure.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a Development of improved anodes in solid oxide fuel cells for conversion of synthesis gas from thermo-chemical gasification of biomass (275388933)
|0 G:(GEPRIS)275388933
|c 275388933
|x 1
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Meille, Sylvain
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nakajo, Arata
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Leguillon, Dominique
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hubert, Maxime
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lenser, C.
|0 P:(DE-Juel1)138081
|b 5
|u fzj
700 1 _ |a Laurencin, Jérôme
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1149/10301.1151ecst
|g Vol. 103, no. 1, p. 1151 - 1163
|0 PERI:(DE-600)2251888-5
|n 1
|p 1151 - 1163
|t ECS transactions
|v 103
|y 2021
|x 1938-6737
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/894626/files/Abaza_2021_ECS_Trans._103_1151-2.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894626/files/ECS_SOFCXVII_Abaza%20et%20al_pre-print.pdf
909 C O |o oai:juser.fz-juelich.de:894626
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138081
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21