000894630 001__ 894630 000894630 005__ 20240712113123.0 000894630 0247_ $$2doi$$a10.1002/aenm.202100925 000894630 0247_ $$2ISSN$$a1614-6832 000894630 0247_ $$2ISSN$$a1614-6840 000894630 0247_ $$2Handle$$a2128/28573 000894630 0247_ $$2altmetric$$aaltmetric:106079399 000894630 0247_ $$2WOS$$aWOS:000649969200001 000894630 037__ $$aFZJ-2021-03326 000894630 082__ $$a050 000894630 1001_ $$0P:(DE-HGF)0$$aBärmann, Peer$$b0$$eFirst author 000894630 245__ $$aMechanistic Insights into the Pre‐Lithiation of Silicon/Graphite Negative Electrodes in “Dry State” and After Electrolyte Addition Using Passivated Lithium Metal Powder 000894630 260__ $$aWeinheim$$bWiley-VCH$$c2021 000894630 3367_ $$2DRIVER$$aarticle 000894630 3367_ $$2DataCite$$aOutput Types/Journal article 000894630 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630397368_4816 000894630 3367_ $$2BibTeX$$aARTICLE 000894630 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000894630 3367_ $$00$$2EndNote$$aJournal Article 000894630 520__ $$aBecause of its high specific capacity, silicon is regarded as the most promising candidate to be incrementally added to graphite-based negative electrodes in lithium-ion batteries. However, silicon suffers from significant volume changes upon (de-)lithiation leading to continuous re-formation of the solid electrolyte interphase (SEI) and ongoing active lithium losses. One prominent approach to compensate for active lithium losses is pre-lithiation. Here, the “contact pre-lithiation” of silicon/graphite (Si/Gr) negative electrodes in direct contact with passivated Li metal powder (PLMP) is studied, focusing on the pre-lithiation mechanism in “dry state” and after electrolyte addition. PLMP is pressed onto the electrode surface to precisely adjust the degree of pre-lithiation (25%, 50%, and 75%). By in situ XRD and ex situ 7Li NMR studies, it is proven that significant lithiation of Si/Gr electrodes occurs by direct contact to Li metal, that is, without electrolyte. After electrolyte addition, de-lithiation of silicon and graphite is confirmed, resulting in SEI formation. The amount of Li metal highly impacts the presence and durability of the LixC and LixSi phases. Finally, the challenges for homogeneous pre-lithiation and SEI formation are identified, and the impact of electrolyte addition is assessed by analysis of the lateral and in-depth lithium distribution within the Si/Gr electrode. 000894630 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 000894630 536__ $$0G:(EU-Grant)875548$$aSeNSE - Lithium-ion battery with silicon anode, nickel-rich cathode and in-cell sensor for electric vehicles (875548)$$c875548$$fH2020-LC-BAT-2019$$x1 000894630 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000894630 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0 000894630 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1 000894630 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0 000894630 7001_ $$0P:(DE-Juel1)187471$$aMohrhardt, Marvin$$b1$$ufzj 000894630 7001_ $$0P:(DE-HGF)0$$aFrerichs, Joop Enno$$b2 000894630 7001_ $$0P:(DE-HGF)0$$aHelling, Malina$$b3 000894630 7001_ $$0P:(DE-HGF)0$$aKolesnikov, Aleksei$$b4 000894630 7001_ $$0P:(DE-HGF)0$$aKlabunde, Sina$$b5 000894630 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b6 000894630 7001_ $$0P:(DE-HGF)0$$aHansen, Michael Ryan$$b7 000894630 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b8$$eCorresponding author$$ufzj 000894630 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b9$$eCorresponding author 000894630 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202100925$$gVol. 11, no. 25, p. 2100925 -$$n25$$p2100925$$tAdvanced energy materials$$v11$$x1614-6840$$y2021 000894630 8564_ $$uhttps://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202100925 000894630 8564_ $$uhttps://juser.fz-juelich.de/record/894630/files/Fullpaper.pdf$$yOpenAccess 000894630 909CO $$ooai:juser.fz-juelich.de:894630$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000894630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187471$$aForschungszentrum Jülich$$b1$$kFZJ 000894630 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b8$$kFZJ 000894630 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000894630 9141_ $$y2021 000894630 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30 000894630 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000894630 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2019$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger 000894630 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2019$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000894630 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30 000894630 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30 000894630 920__ $$lyes 000894630 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000894630 9801_ $$aFullTexts 000894630 980__ $$ajournal 000894630 980__ $$aVDB 000894630 980__ $$aUNRESTRICTED 000894630 980__ $$aI:(DE-Juel1)IEK-12-20141217 000894630 981__ $$aI:(DE-Juel1)IMD-4-20141217