001     894630
005     20240712113123.0
024 7 _ |a 10.1002/aenm.202100925
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/28573
|2 Handle
024 7 _ |a altmetric:106079399
|2 altmetric
024 7 _ |a WOS:000649969200001
|2 WOS
037 _ _ |a FZJ-2021-03326
082 _ _ |a 050
100 1 _ |a Bärmann, Peer
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Mechanistic Insights into the Pre‐Lithiation of Silicon/Graphite Negative Electrodes in “Dry State” and After Electrolyte Addition Using Passivated Lithium Metal Powder
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630397368_4816
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Because of its high specific capacity, silicon is regarded as the most promising candidate to be incrementally added to graphite-based negative electrodes in lithium-ion batteries. However, silicon suffers from significant volume changes upon (de-)lithiation leading to continuous re-formation of the solid electrolyte interphase (SEI) and ongoing active lithium losses. One prominent approach to compensate for active lithium losses is pre-lithiation. Here, the “contact pre-lithiation” of silicon/graphite (Si/Gr) negative electrodes in direct contact with passivated Li metal powder (PLMP) is studied, focusing on the pre-lithiation mechanism in “dry state” and after electrolyte addition. PLMP is pressed onto the electrode surface to precisely adjust the degree of pre-lithiation (25%, 50%, and 75%). By in situ XRD and ex situ 7Li NMR studies, it is proven that significant lithiation of Si/Gr electrodes occurs by direct contact to Li metal, that is, without electrolyte. After electrolyte addition, de-lithiation of silicon and graphite is confirmed, resulting in SEI formation. The amount of Li metal highly impacts the presence and durability of the LixC and LixSi phases. Finally, the challenges for homogeneous pre-lithiation and SEI formation are identified, and the impact of electrolyte addition is assessed by analysis of the lateral and in-depth lithium distribution within the Si/Gr electrode.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a SeNSE - Lithium-ion battery with silicon anode, nickel-rich cathode and in-cell sensor for electric vehicles (875548)
|0 G:(EU-Grant)875548
|c 875548
|f H2020-LC-BAT-2019
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Chemical Reactions and Advanced Materials
|0 V:(DE-MLZ)GC-1603-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Mohrhardt, Marvin
|0 P:(DE-Juel1)187471
|b 1
|u fzj
700 1 _ |a Frerichs, Joop Enno
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Helling, Malina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kolesnikov, Aleksei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Klabunde, Sina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hansen, Michael Ryan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 9
|e Corresponding author
773 _ _ |a 10.1002/aenm.202100925
|g Vol. 11, no. 25, p. 2100925 -
|0 PERI:(DE-600)2594556-7
|n 25
|p 2100925
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |u https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202100925
856 4 _ |u https://juser.fz-juelich.de/record/894630/files/Fullpaper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894630
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21