000894638 001__ 894638
000894638 005__ 20240708133644.0
000894638 0247_ $$2doi$$a10.1021/acsenergylett.1c01449
000894638 0247_ $$2Handle$$a2128/28874
000894638 0247_ $$2altmetric$$aaltmetric:112262538
000894638 0247_ $$2WOS$$aWOS:000696180500026
000894638 037__ $$aFZJ-2021-03334
000894638 082__ $$a333.7
000894638 1001_ $$0P:(DE-Juel1)172068$$aSiekmann, Johanna$$b0$$ufzj
000894638 245__ $$aApparent Defect Densities in Halide Perovskite Thin Films and Single Crystals
000894638 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2021
000894638 3367_ $$2DRIVER$$aarticle
000894638 3367_ $$2DataCite$$aOutput Types/Journal article
000894638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635947937_14075
000894638 3367_ $$2BibTeX$$aARTICLE
000894638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894638 3367_ $$00$$2EndNote$$aJournal Article
000894638 520__ $$aNon-radiative recombination via defects is a major loss mechanism for nearly all photovoltaic technologies. (1) Despite their frequently quoted “defect tolerance”, (2,3) halide perovskites are no exception to this rule, given that it remains difficult to exceed luminescence quantum efficiencies of a few percent at photovoltaic working conditions in devices. (4−6) Given the importance of non-radiative recombination, the experimental detection of the culprits, i.e., the most recombination-active defects, is of substantial importance for controlled optimization of devices but also for long-term strategic decisions. One such strategic decision is the assessment of possible performance benefits associated with going from polycrystalline thin films to single crystals (7,8) as active elements in perovskite solar cells. A substantial amount of experimental data (9−17) indicates that polycrystalline thin films of lead halide perovskites typically have defect densities on the order of 1015–1016 cm–3, while single crystals are typically reported (9,14,18−20) to have bulk defect densities of 1012 cm–3 or lower. These findings support an intuitive rationale, namely that single crystals have orders of magnitude lower defect densities than thin films that should contain a certain density of defects at their grain boundaries. This narrative has even inspired paper titles such as the one from Brenes et al., (21) who write about “Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals” while reporting exceptionally long charge-carrier lifetimes in perovskite thin films.
000894638 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000894638 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894638 7001_ $$0P:(DE-HGF)0$$aRavishankar, Sandheep$$b1
000894638 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2$$eCorresponding author
000894638 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.1c01449$$gp. 3244 - 3251$$n9$$p3244 - 3251$$tACS energy letters$$v6$$x2380-8195$$y2021
000894638 8564_ $$uhttps://juser.fz-juelich.de/record/894638/files/siekmann21acsel.pdf$$yPublished on 2021-08-23. Available in OpenAccess from 2022-08-23.
000894638 909CO $$ooai:juser.fz-juelich.de:894638$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172068$$aForschungszentrum Jülich$$b0$$kFZJ
000894638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
000894638 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000894638 9141_ $$y2021
000894638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS ENERGY LETT : 2019$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS ENERGY LETT : 2019$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894638 920__ $$lyes
000894638 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000894638 9801_ $$aFullTexts
000894638 980__ $$ajournal
000894638 980__ $$aVDB
000894638 980__ $$aUNRESTRICTED
000894638 980__ $$aI:(DE-Juel1)IEK-5-20101013
000894638 981__ $$aI:(DE-Juel1)IMD-3-20101013