001     894638
005     20240708133644.0
024 7 _ |a 10.1021/acsenergylett.1c01449
|2 doi
024 7 _ |a 2128/28874
|2 Handle
024 7 _ |a altmetric:112262538
|2 altmetric
024 7 _ |a WOS:000696180500026
|2 WOS
037 _ _ |a FZJ-2021-03334
082 _ _ |a 333.7
100 1 _ |a Siekmann, Johanna
|0 P:(DE-Juel1)172068
|b 0
|u fzj
245 _ _ |a Apparent Defect Densities in Halide Perovskite Thin Films and Single Crystals
260 _ _ |a Washington, DC
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635947937_14075
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Non-radiative recombination via defects is a major loss mechanism for nearly all photovoltaic technologies. (1) Despite their frequently quoted “defect tolerance”, (2,3) halide perovskites are no exception to this rule, given that it remains difficult to exceed luminescence quantum efficiencies of a few percent at photovoltaic working conditions in devices. (4−6) Given the importance of non-radiative recombination, the experimental detection of the culprits, i.e., the most recombination-active defects, is of substantial importance for controlled optimization of devices but also for long-term strategic decisions. One such strategic decision is the assessment of possible performance benefits associated with going from polycrystalline thin films to single crystals (7,8) as active elements in perovskite solar cells. A substantial amount of experimental data (9−17) indicates that polycrystalline thin films of lead halide perovskites typically have defect densities on the order of 1015–1016 cm–3, while single crystals are typically reported (9,14,18−20) to have bulk defect densities of 1012 cm–3 or lower. These findings support an intuitive rationale, namely that single crystals have orders of magnitude lower defect densities than thin films that should contain a certain density of defects at their grain boundaries. This narrative has even inspired paper titles such as the one from Brenes et al., (21) who write about “Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals” while reporting exceptionally long charge-carrier lifetimes in perovskite thin films.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ravishankar, Sandheep
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 2
|e Corresponding author
773 _ _ |a 10.1021/acsenergylett.1c01449
|g p. 3244 - 3251
|0 PERI:(DE-600)2864177-2
|n 9
|p 3244 - 3251
|t ACS energy letters
|v 6
|y 2021
|x 2380-8195
856 4 _ |u https://juser.fz-juelich.de/record/894638/files/siekmann21acsel.pdf
|y Published on 2021-08-23. Available in OpenAccess from 2022-08-23.
909 C O |o oai:juser.fz-juelich.de:894638
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS ENERGY LETT : 2019
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS ENERGY LETT : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21