000894686 001__ 894686
000894686 005__ 20240625095119.0
000894686 0247_ $$2doi$$a10.1007/s00775-021-01890-8
000894686 0247_ $$2ISSN$$a0949-8257
000894686 0247_ $$2ISSN$$a1432-1327
000894686 0247_ $$2Handle$$a2128/28717
000894686 0247_ $$2pmid$$a34453614
000894686 0247_ $$2WOS$$aWOS:000690718000002
000894686 037__ $$aFZJ-2021-03348
000894686 1001_ $$00000-0003-0061-7265$$aZuo, Ke$$b0
000894686 245__ $$aThe two redox states of the human NEET proteins’ [2Fe–2S] clusters
000894686 260__ $$aNew York$$bSpringer$$c2021
000894686 3367_ $$2DRIVER$$aarticle
000894686 3367_ $$2DataCite$$aOutput Types/Journal article
000894686 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633012454_28278
000894686 3367_ $$2BibTeX$$aARTICLE
000894686 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894686 3367_ $$00$$2EndNote$$aJournal Article
000894686 520__ $$aThe NEET proteins constitute a unique class of [2Fe–2S] proteins. The metal ions bind to three cysteines and one histidine. The proteins’ clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical calculations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe–NHis and Fe–SCys bonds, similar to what is seen in other Fe–S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra electron in the [2Fe–2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe–2S]+ is released only by an increase in temperature. Thus, the reduced state of human NEET proteins [2Fe–2S] cluster is kinetically inert. This previously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all [2Fe–2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 and G85 in the latter region share similar allosteric characteristics in both redox states.
000894686 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000894686 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000894686 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894686 7001_ $$00000-0002-8231-5895$$aMarjault, Henri-Baptiste$$b1
000894686 7001_ $$00000-0002-8082-3634$$aBren, Kara L.$$b2
000894686 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b3$$ufzj
000894686 7001_ $$00000-0002-3219-954X$$aNechushtai, Rachel$$b4
000894686 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding author
000894686 773__ $$0PERI:(DE-600)1464026-0$$a10.1007/s00775-021-01890-8$$p763–774$$tJournal of biological inorganic chemistry$$v26$$x1432-1327$$y2021
000894686 8564_ $$uhttps://juser.fz-juelich.de/record/894686/files/Zuo2021_Article_TheTwoRedoxStatesOfTheHumanNEE.pdf$$yOpenAccess
000894686 8767_ $$d2021-08-28$$eHybrid-OA$$jDEAL
000894686 909CO $$ooai:juser.fz-juelich.de:894686$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000894686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b3$$kFZJ
000894686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b5$$kFZJ
000894686 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000894686 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000894686 9141_ $$y2021
000894686 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894686 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-04$$wger
000894686 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL INORG CHEM : 2019$$d2021-02-04
000894686 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000894686 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894686 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000894686 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000894686 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000894686 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000894686 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000894686 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000894686 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000894686 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000894686 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000894686 9801_ $$aFullTexts
000894686 980__ $$ajournal
000894686 980__ $$aVDB
000894686 980__ $$aUNRESTRICTED
000894686 980__ $$aI:(DE-Juel1)IAS-5-20120330
000894686 980__ $$aI:(DE-Juel1)INM-9-20140121
000894686 980__ $$aI:(DE-Juel1)JSC-20090406
000894686 980__ $$aAPC