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Abstract
The NEET proteins constitute a unique class of [2Fe–2S] proteins. The metal ions bind to three cysteines and one histidine. 
The proteins’ clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to 
apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we 
perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical cal-
culations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe–NHis and Fe–SCys 
bonds, similar to what is seen in other Fe–S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra 
electron in the [2Fe–2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently 
with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe–2S]+ is released only by an 
increase in temperature. Thus, the reduced state of human NEET proteins [2Fe–2S] cluster is kinetically inert. This previ-
ously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all 
[2Fe–2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight 
on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 
and G85 in the latter region share similar allosteric characteristics in both redox states.
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Introduction

Two iron–two sulfur [2Fe–2S] proteins perform electron trans-
fer, serve as oxygen/iron sensors and transcription factors, 
and perform enzymatic reactions and many other functions 
across the three kingdoms of life [1, 2]. They contain a fer-
rous and ferric or two ferric ions in their reduced and oxidized 
forms, respectively [3]. The metal ions bind usually to four Cys 
residues. Yet, in few cases, Asp, Arg and/or His residues [4] 
replace one or two cysteines (Chart 1). Among these are the 
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NEET proteins, featuring two clusters with 3Cys:1His coor-
dination (Chart 1) [5].

Three human NEET proteins have been identified. One 
(MiNT) is located only inside the mitochondria [6]. The other 
two, mNT and NAF-1 are anchored to the outer mitochon-
drial membrane with NAF-1 also present on the surface of 
the endoplasmic reticulum and its mitochondrial associated 
membrane [6]. Under healthy conditions [7], they are usu-
ally in their reduced, dormant state [8, 9], because of their 
reducing environment. In the oxidized state, often triggered 
by oxidative stress [6], the human NEET proteins are able to 
transfer their [2Fe–2S] clusters to apo-acceptor proteins with-
out the aid of specific chaperons [10] such as the mitochon-
drial human GLRX5 [11, 12] and the cytosolic human GLRX3 
[13] [2Fe–2S] proteins. Unfortunately, aberrant cluster transfer 
upon oxidative conditions can occur during pathological con-
ditions as in cancer, metabolic and neurodegenerative diseases 
[6]. Hence, human NEET proteins are promising targets for 
treating a variety of diseases, from cancer to neurodegenera-
tive diseases [6].

The electronic and structural properties of human oxidized 
NEET proteins [14, 15], along with their kinetic properties 
[10, 16], have been characterized. Here, by performing den-
sity functional theory (DFT) calculations, molecular dynamics 
(MD) simulations and in vitro experiments on the reduced 
and oxidized forms, along with a coevolutionary analysis of 
these proteins, we provide insight on the reduced state and 
offer a detailed comparison between the two redox states of 
the human NEET proteins.

Results and discussion

Our investigation is carried out in three steps. First, we 
perform DFT calculations on three models of the reduced 
metal sites (Fig. 1) to investigate their electronic proper-
ties. This work builds on our previous DFT investigations 
of the oxidized state [17] and it presents also new results 
for the latter. Next, we perform kinetic measurements to 
investigate the lability of the reduced cluster at different 
temperatures. Finally, we carry out a coevolutionary analy-
sis, based on molecular dynamics (MD) simulations on 
the oxidized and reduced forms performed in this work, 
to provide insight on the identified allostery between a 
loop opposed to the cluster (L2 in Fig. 5C) and the cluster 
binding region [18].

Quantum chemistry

Calculations at the B3LYP/6–311++G(2d,2p) [19, 20] 
level of theory (already used for Fe–S proteins [21], 
including oxidized human NEET proteins [17]) are car-
ried out on all of the 12 human NEET PDB structures 
(Table S1 and Fig. 1), in both the reduced and oxidized 
states. These are ten mNT and two NAF-1 proteins. Some 
of results for the oxidized state have been already reported 
in Ref. [17].

Chart 1   Metals’ coordination in [2Fe–2S] proteins Fig. 1   Schematic of models 1, 2 and 3 used for the QM calculations 
presented in this work. In 1, 2 and 3, the [2Fe–2S] clusters are sepa-
rated into four independent fragments as in Ref. [17] (FeX, FeY, S1 
and S2 in the figure). The ligation residues are treated as separate 
four, two and two fragments in 1, 2 and 3, respectively [17]. The frag-
ments are colored differently
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The calculations shed light on the strength of the 
Fe–NHis and Fe–SCys bonds upon reduction: the force 
constants and delocalization indexes, which correlate 
with bond strengths and bond orders [25], respectively, 
decrease (Tables 1, 2, and S3). The Fe-bound His is con-
sidered here to be protonated (Fig. 2A). Similar conclu-
sions are drawn: (i) when considering the His to be depro-
tonated (Table 2); (ii) when including the protein frame’s 
electric field and thermal fluctuations of the protein using 
results from MD simulations performed in this work (see 
“Methods”); (iii) when employing another functional used 
for Fe–S proteins [B(5%HF)P86/def–TZVP] [23, 24, 26]; 
(iv) when including dispersion contributions, which can 
be significant in DFT calculations on proteins [27]. Thus, 
these results appear to be quite robust. They are fully con-
sistent with previous studies which point to a decrease 
of iron-donor atom bond strength upon the reduction of 
4Cys-coordinated [28] and 2Cys:2His [2Fe–2S] proteins 
[29].  

Our QM calculations provide information also into 
the change in charge distribution in the cluster. The extra 
charge density turns out to involve the His-bound iron 
ion, close to the protein surface, and its ligands (Fig. 2A). 
Indeed, the largest increase in electronic charge is mainly 
localized on that iron ion, on the two inorganic sulfurs and 
the histidine. Interestingly, however, the nitrogen donor 
atom decreases its charge. This is likely to be caused by a 
competition between the Fe–NHis σ bond, which may be 
stronger in the oxidized state [33], and the π bond involv-
ing the aromatic ring and the metal ion. An analysis of 
the localized orbital locator (LOL) values on the critical 
points, which correlate with bond strength [30], suggests 
that this is the case. Indeed, on passing from the oxidized 
to the reduced forms, the LOL σ values decrease from 0.21 
to 0.19, while the LOL π values increase from 0.15 to 0.24, 
overcoming the contribution of the σ donation (Figs. 2B 
and S1). The reduction process is carried by the lowest 
unoccupied molecular orbital (LUMO) of the oxidized 
form, ready to accept the electron upon reduction, and the 
highest occupied MO (HOMO) of the reduced form; both 
are mainly localized on the His-bound iron ion, close to 
the protein surface, but not the other iron ion (Figs. 2C 
and S2–S6). We conclude that the His-bound iron, located 
at the surface of the protein, is the one that gets reduced. 
This is fully consistent with spectroscopic studies, which 
show that the reduced form features a ferrous iron bound 
to His87 [14]. We close this section by pointing out that 
one of the three human NEET proteins, mNT, exhibits 
highly complex proton coupled electron transfer processes 
during reduction [16], although a clear link between these 
processes and cluster release has not emerged yet. This 
process is not investigated here: we rather focus on the 

Table 1   Average bond lengths (Rmin, in nm) and bond force constants 
(Kr, in kJ/mol  nm2) of [2Fe–2S] clusters as obtained by geometry 
optimizations of model 1, based on the human mNT structure (PDB 
ID: 2QH722)

As mentioned above, the geometry optimizations of the 12 X-ray 
structures lead to very similar structural determinants. Thus, only the 
results for one of them (PDB ID: 2QH7 [22]) are reported here. The 
calculations are carried out at the B3LYP/6-311++G(2d,2p) [19, 20] 
(top) and B(5%HF)P86/def-TZVP [23, 24] (bottom) levels. Both the 
oxidized (in bold face) and reduced (in italics) states are considered. 
The protonation state of the iron-bound histidine is specified in the 
table. The overall RMSD relative to the initial structures are reported 
in parentheses

Bond Rmin Kr Bond Rmin Kr

B3LYP, with protonated Fe-bound His (RMSD = 0.004/0.014 nm)
 FeX–S1 0.228 31,254.5 FeX–SCys1 0.232 33,555.7
 FeX–S2 0.229 29,497.2 FeX–SCys2 0.232 33,095.4
 FeY–S1 0.221 46,358.7 FeY–SCys3 0.233 31,882.1
 FeY–S2 0.221 45,145.4 FeY–NHis 0.218 16,359.4
 FeX–S1 0.226 36,024.2 FeX–SCys1 0.240 23,472.2
 FeX–S2 0.227 35,187.4 FeX–SCys2 0.240 23,263.0
 FeY–S1 0.230 30,585.0 FeY–SCys3 0.242 17,572.8
 FeY–S2 0.231 29,078.8 FeY–NHis 0.230 7740.4

B3LYP, with unprotonated Fe-bound His 
(RMSD = 0.007/0.006 nm)

 FeX–S1 0.227 34,267.0 FeX–SCys1 0.236 27,154.2
 FeX–S2 0.226 34,225.1 FeX–SCys2 0.234 29,999.3
 FeY–S1 0.225 35,982.4 FeY–SCys3 0.236 27,196.0
 FeY–S2 0.226 35,522.2 FeY–NHis 0.205 32,300.5
 FeX–S1 0.225 39,413.3 FeX–SCys1 0.246 17,028.9
 FeX–S2 0.225 38,534.6 FeX–SCys2 0.243 19,706.6
 FeY–S1 0.237 21,212.9 FeY–SCys3 0.246 13,012.2
 FeY–S2 0.237 20,878.2 FeY–NHis 0.217 14,644.0

B(5%HF)P86, with protonated Fe-bound His 
(RMSD = 0.005/0.017 nm)

 FeX–S1 0.224 32,384.2 FeX–SCys1 0.230 31,923.9
 FeX–S2 0.225 30,961.6 FeX–SCys2 0.231 31,338.2
 FeY–S1 0.219 45,563.8 FeY–SCys3 0.231 31,589.2
 FeY–S2 0.219 43,890.2 FeY–NHis 0.216 15,020.6
 FeX–S1 0.225 36,191.6 FeX–SCys1 0.238 24,016.2
 FeX–S2 0.225 35,689.5 FeX–SCys2 0.237 23,848.8
 FeY–S1 0.224 35,438.5 FeY–SCys3 0.236 20,836.3
 FeY–S2 0.225 32,969.9 FeY–NHis 0.223 5230.0

B(5%HF)P86, with unprotonated Fe-bound His 
(RMSD = 0.008/0.007 nm)

 FeX–S1 0.223 36,442.6 FeX–SCys1 0.235 27,279.7
 FeX–S2 0.223 36,861.0 FeX–SCys2 0.232 30,375.8
 FeY–S1 0.223 37,363.1 FeY–SCys3 0.235 26,986.8
 FeY–S2 0.224 36,484.5 FeY–NHis 0.204 31,212.6
 FeX–S1 0.224 38,785.7 FeX–SCys1 0.245 17,321.8
 FeX–S2 0.224 38,409.1 FeX–SCys2 0.240 20,459.8
 FeY–S1 0.230 25,355.0 FeY–SCys3 0.240 15,522.6
 FeY–S2 0.231 24,685.6 FeY–NHis 0.215 14,309.3
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initial and final states of the process (i.e., four possible 
oxidized/reduced [2Fe–2S] with protonated/deprotonated 
His ligand states, see Fig. 2A).

Kinetic measurements

The reduced state is inert at room temperature [16]. So, we 
expect that the free energy barrier of cluster transfer is higher 
at the transition state in the reduced form (ΔG‡

red > ΔG‡
ox, 

see Fig. 3). To test this hypothesis, we measured the in vitro 
stability of the [2Fe–2S] clusters of the wild type mNT pro-
tein as well as H87C variant in the reduced state at different 
temperatures (Figs. 4 and S7). For a proper comparison with 
the oxidized state, we perform the measurements for the 
oxidized state (already reported in Ref. [10]), in exactly the 
same conditions as those carried out for the reduced form. 
The oxidized [2Fe–2S] clusters are highly labile at 310 K, 
as already observed [16] (ΔG‡

ox ≈ kBT) while the reduced 
ones remain stable over a long time in the same conditions 
(Fig. 4A). Thus, here ΔG‡

red > kBT. However, the lability 
of the reduced correlates with the rise of temperature to 
313, 315 and 318 K (Fig. 4B). Taking these results together 
with those of the previous section, we suggest that reduc-
tion weakens the coordination bonds but the cluster stays 
bound to the protein at physiological temperature because of 

a relatively high free energy barrier that hampers its release 
(Fig. 4); i.e., the reaction is kinetically controlled. On the 
other hand, the oxidized state, albeit more thermodynami-
cally stable, is labile at room temperature because of the 
small barrier to release (Fig. 4). Interestingly, increasing the 
temperature turns out not affect the cluster lability of the 
H87C mutant, in which the Fe-bound histidine is replaced by 
a cysteine (Fig. S7). Thus, the His-Fe bound is a key deter-
minant for the observed reactivity of the cluster at higher 
temperature. 

Coevolutionary analysis and molecular dynamics 
simulations

So far, our attention has focused on specific properties of the 
cluster, from the electronic structure to kinetics. We close 
this section by investigating an important property involving 
the entire protein, in both the reduced and oxidized states. 
This is the allostery between L2 present in mNT’s β-cap 
domain and the cluster binding region, which was observed 
by one of us many years ago [35]. This allostery plays an 
essential role in the cluster release/transfer to apo-accep-
tor proteins [8, 35]. Here, we identify the specific residues 
involved in the allostery as well as the dependence of the 

Table 2   Delocalization indexes of the Fe–NHis and Fe–S bond in oxidized (top line, bold face) and reduced (bottom line, italics) states, respec-
tively

These have been obtained by unrestricted HF/6-311++G(2d,2p) calculations on model 1 as in Ref. [25], based on the B3LYP/6-311++G(2d,2p) 
[19, 20] and B(5%HF)P86/def-TZVP [23, 24] optimized structures. The geometry optimizations are carried out either without constraints or 
with constraints on the Cα atoms (underscored number). Numbers with a dagger symbol were obtained by adding DFT-D3(BJ) corrections [27, 
31, 32] in geometry optimizations (see “Methods”). Because the latter are almost identical across the structures investigated here, the results of 
only one of them (Human mNT, PDB ID: 2QH7 [22]) are reported

FeX–SCys1 FeX–SCys2 FeX–S1 FeX–S2 FeY–SCys3 FeY–NHis FeY–S1 FeY–S2

B3LYP geometry Protonated His
 0.567 0.553 0.610 0.590 0.544 0.281 0.755 0.736
 0.476 0.471 0.685 0.677 0.457 0.234 0.579 0.557
 0.583† 0.564† 0.603† 0.602† 0.557† 0.306† 0.742† 0.745†

 0.491† 0.486† 0.686† 0.672† 0.466† 0.269† 0.575† 0.560†

Deprotonated His
 0.524† 0.533† 0.651† 0.647† 0.522† 0.410† 0.658† 0.648†

 0.442† 0.459† 0.721† 0.709† 0.440† 0.353† 0.506† 0.497†

B(5%HF)P86 geometry Protonated His
 0.633 0.579 0.730 0.734 0.570 0.426 0.740 0.723
 0.482 0.483 0.694 0.687 0.484 0.257 0.619 0.590
 0.562 0.563 0.648 0.625 0.542 0.296 0.754 0.745
 0.475 0.491 0.704 0.668 0.473 0.275 0.599 0.612

Deprotonated His
 0.516 0.537 0.659 0.665 0.515 0.403 0.682 0.668
 0.425 0.454 0.729 0.720 0.451 0.335 0.542 0.528
 0.515 0.531 0.680 0.658 0.514 0.398 0.675 0.664
 0.429 0.458 0.737 0.705 0.448 0.327 0.544 0.535
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latter on the redox state of the protein. Both features are 
currently not known.

Here, we exploit the fact that allosteric communication 
between different protein regions can be mirrored by pairs of 
coevolved residues [18]. These residues exhibit concordant 
patterns of evolution: they jointly mutated with a frequency 
higher than the average [36]. A pair of residues is considered 
to be strongly coevolving if the residues are not in close 
proximity of each other and if their coevolution score (here 
calculated with the CoeViz web server (http://​polyv​iew.​
cchmc.​org/) [18] is greater than 0.7. The calculation of the 
co-evolution score is based on proteins’ sequences [18]. To 
determine the contiguity between the residue pairs, we need 
structural information on the reduced and oxidized mNT. 
Because the experimental structure of the reduced form is 
not available [37], here we use representative structures from 
1 μs long, AMBER-based MD simulations of the oxidized 
and reduced mNT in solution (see SI, Section III). The simu-
lations are based on the X-ray structure of mNT (PDB ID: 
2QH7 [22]). They use an AMBER-compatible force fields 
developed here and in Ref. [17] for the reduced and oxidized 
metal clusters, respectively.

The identified strong coevolving pairs are the same for 
both redox states (Fig. S12), consistent with the high simi-
larity between reduced and oxidized mNT representative 
MD structures: the RMSD on the Cα atoms is as low as 
0.5 Å (see Fig. S10). In particular, Trp75, Arg76, Lys78 and 
Lys79 adjacent to cluster binding area, along with Phe82 
and Gly85 located beside ligand Cys83 and His87, turn 
out to strongly co-evolve with Met62–Lys68 in L2 region, 
and, the latter two, also with Cys83 and His87 (Figs. 5 and 
S12).1 Thus, our analysis confirms previous findings [35], 
and details which residues are involved in the allosteric com-
munication. Our analysis shows that the cross-talk between 
the β-cap and cluster binding region of human mNT involves 
the same amino acid residues in oxidized and in the reduced 
form. However, the allosteric effect on these amino acids 
can differ significantly on passing from one oxidation state 
to the other. These findings do not provide insights into the 
role that allostery plays in the cluster release/transfer to apo-
acceptor proteins or into the redox dependence of cluster 
release/transfer.

Conclusions

We have provided here a detailed picture of the reduced 
form of human NEET proteins and compared it with that 
of the oxidized state. Our quantum chemical studies, per-
formed across all structures available in the PDB, suggest 

that reduction of the oxidized cluster involves the iron bound 
to the histidine, consistent with experiment [14] and it weak-
ens the coordination bonds of the metal ions, as seen for 
other iron–sulfur clusters. Nevertheless, the cluster remains 
bound in the reduced state because it is kinetically inert, 
as shown here by in vitro measurements on the mNT pro-
tein’s cluster stability. Finally, our in silico analysis across 
all human NEET proteins provide insight on the observed 
allostery cross-talk between the L2 of the β-cap domain and 
the cluster region [35]. The residues involved in it turn out 
to be Met62–Lys68, from the L2 loop and Trp75, Arg76, 
Lys78, Lys79, Phe82 and Gly85 from the cluster region for 
mNT in both redox states (Figs. 5 and S12).

Methods

QM calculations

The MCPB.py script [38] in the AMBER16 package [39] 
was employed to construct the QM truncated models 1, 2 
and 3 (Fig. 1). These are built from the 12 X-ray structures 
of human NEET proteins (mNT [22, 35, 40–44] and NAF-1 
[45, 46], Table S1). In 1, the [2Fe–2S] cluster and the side 
chains of ligated three cysteine residues and one histidine 
residue were included. All Cβs are saturated with H atoms. In 
2, the whole ligation residues, as mentioned above, and the 
main chain atoms of the residues connecting those residues 
in the protein were included. The side chain of connection 
residues was replaced with H atoms. 3 included the [2Fe–2S] 
cluster and all residues within 4 Å from the cluster. Models 
1 were terminated by methyl groups, those of 2 and 3 with 
acetyl (ACE) or N-methyl (NME) groups. Hydrogen atoms 
were added assuming standard bond lengths and angles.

The experimental spin state of the NEET proteins was 
given as an input in the fragment-combination method 
(Table S2) [47]. This method controls the generation of ini-
tial guess for the Hartree–Fock wavefunction from fragment 
guesses or self-consistent field method solutions, which con-
verged the wavefunction to the desired antiferromagnetic 
state. It has been used for a variety of other Fe–S proteins 
[21], including NEET proteins in the oxidized state [17]. 
Geometry optimization of 1 was carried out with the unre-
stricted B3LYP/6-311++G(2d,2p) [19, 20] with and without 
Grimme-type empirical D3(BJ) dispersion corrections [27, 
31, 32], and B(5%HF)P86/def-TZVP functionals [23, 24]. 
Both functionals have been widely used to study [2Fe–2S] 
and [4Fe–4S] clusters’ electronic structure [17, 21, 26].2 The 

1  The coevolution score of four cluster ligating amino acids with L2 
and other regions of the protein is much lower than 0.7.

2  Several other functionals have been used to investigate Fe–S clus-
ters (for instance PW91 [48] and BP86 [48, 49]).

http://polyview.cchmc.org/
http://polyview.cchmc.org/
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geometrical optimization was carried out using the follow-
ing convergence criterion: the maximum and RMS force on 
the nuclei are less than 0.00045 Hartrees/Bohr and 0.00035 
Hartrees/Bohr, respectively, and the maximum and RMS 
nuclei displacement are less than 0.0018 and 0.0012 Å, 
respectively. The structural determinants of the optimized 
structures are basically identical and therefore the results 
are reported only for the mNT protein (PDB ID: 2QH7 
[22]). Single point energy calculations, based on the X-ray 
structures, were carried out at the unrestricted B3LYP/6-
311++G(2d,2p) level [19, 20] on 2 and 3.

In some calculations, we applied constraints on the Cα 
atoms within geometry optimization to mimic protein envi-
ronment in model 1. We finally carried out single point cal-
culations on model 1 with the geometry of cluster repre-
sentatives of the MD simulations (see section below).

An in-house code (cpmd-cube-tools: https://​pypi.​org/​
proje​ct/​cpmd-​cube-​tools/) [50] was used to calculate the 
change in electron density ( Δ� ) upon reduction of 1:

where �red and �ox were the electron densities in the 
reduced and oxidized states, respectively. The calculations 
were based on the optimized geometry of the oxidized states. 
The changes in charge (ΔQ) were calculated as integrals of 
Δ� around selected atoms.

Coevolution analysis

This was performed with the web-based tool CoeViz [18] 
integrated in the web server POLYVIEW-2D [51]. Weighted 
Chi-squared metric was used with 20 amino acid alphabets 
by sequence identity [18, 52]. The cut-off of strong co-evo-
lution was set to 30% top scores based on the statistics of the 
whole co-evolution scores.

Δ� = �red − �ox,

MD simulations of oxidized and reduced human 
mNT in water solution

The calculations were based on the X-ray structure with 
PDB ID: 2QH7 [22]. H atoms were added to the heavy 
atoms assuming standard bond length and bond angles. 
The titratable residues were protonated assuming a pH of 
6.0—the same as in our experiments below—using the H++ 
webserver [53]. The proteins were embedded in the center 
of a dodecahedron box with a distance of 3.0 nm or larger 
from the protein to the border of the box. Na+ and Cl− ions 
were added to neutralize the systems and mimic our experi-
mental ionic strengths of 100 mM NaCl, (see “Experimental 
procedure”, Table S5).

The protein, water and counterions were described by the 
AMBER99SB-ILDN [54, 55], TIP3P [56], and the Åqvist 
potential [57], respectively. The force field parameters of the 
clusters were calculated for the reduced state using MCPB.py 
[38] following Ref. [21] and our previous work [17] (Table 1). 
In particular, the restrained electrostatic potential (RESP) 
atomic charges [58] were calculated on 2 using the Merz–Koll-
man (MK) scheme [59] at the same unrestricted B3LYP/6-
311++G(2d,2p) theoretical level [19, 20]. All the parameters 
are compatible with the AMBER99SB-ILDN force field [54, 
55]. For the oxidized state, we used our previous work [17].

Periodic boundary conditions were applied. Particle mesh 
Ewald (PME) method [60] was used for electrostatic inter-
action with a cutoff of 1.2 nm. The cutoff used for van der 
Waals interaction was 1.2 nm. Using the LINCS algorithm 
[61] to constrain all of the bonds. The Nose–Hoover thermo-
stat [62, 63] and Parrinello–Rahman barostat [64] were used 
to obtain the constant temperature and pressure conditions, 
respectively. The integration step of the MD simulation 
above was set to 2 fs. Each system was energy-minimized 
by 50,000-step steepest descent and 50,000-step conjugate 
gradient algorithms, respectively, then heated up to 300 K 
by 1-ns simulated annealing process. To pre-equilibrate the 
simulated systems, 50-ns isochoric-isothermal (NVT) and 
50-ns isobaric-isothermal (NPT) simulations were employed 
orderly. Then, 1-μs production trajectories were collected 
at 310 K and 1 atm for data analyses. Both MD simulations 
equilibrate after 100 ns (see SI, Fig. S9). We select repre-
sentative structures form equilibrated trajectories (that is, 
the last 200 ns) using a cluster analysis (see SI, Section III).

The GROMOS clustering analysis code [65] was 
employed to identify the representative conformations in 
the last 200-ns trajectories, with a cutoff of 0.11 nm of 
backbone. 16 and 8 representatives were obtained for the 
oxidized and reduced proteins, respectively.

Fig. 2   The two redox states of the clusters in human NEET proteins. 
A The charge (right) upon reduction of the oxidized state is local-
ized to His-bound iron FeY, bridge sulfur S1 and S2, and Sγ of Cys 
ligands while it decreases on Nδ of His ligand. B Contours (0.2 e/Å3) 
of the localized orbital locator (LOL) [30] for the complex and in par-
ticular for the histidine-iron σ and π bonds. C The molecular orbit-
als involved in the reduction are the LUMO of the oxidized form and 
the HOMO of the reduced form, as emerging from an analysis of the 
Kohn–Sham orbitals. Both involve the surface localized His-bound 
iron and not the other iron. The HOMO energy is set to zero for each 
state. Contours shown at 0.01 e/Å3. The calculations are carried out 
at the B3LYP/6-311++G(2d,2p) [19, 20] level of theory for the PDB 
ID: 2QH7 structure [22]. Very similar results are obtained for all the 
other 11 structures analyzed here and for calculations at the B(5%HF)
P86 [23, 24] level of theory (data not shown)

◂

https://pypi.org/project/cpmd-cube-tools/
https://pypi.org/project/cpmd-cube-tools/
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Codes

QM, molecular orbitals analyses and MD calculations were 
carried out using in Gaussian09 [47], GaussView5.0 [66], 
Multiwfn [67], and GROMACS 2019.4 [68, 69] software 
packages, respectively.

Experimental procedure

Proteins expression and purification

mNT protein and its H87C mutant were expressed and puri-
fied as described in Refs. [10, 45]. Briefly, the soluble part 
of mNT protein/H87C (residue 33–108) were inserted into 
the expression vector pet-28a + (Novagen). The recombinant 
human mNT/H87C was expressed in Escherichia coli BL21-
RIL grown in LB supplemented with 30 μg/mL kanamycin 
and 34 μg/mL chloramphenicol. At an OD600 of 0.6, the cells 
were supplemented with 0.75 mM FeCl3 and the expression 
was activated using 0.25 mM of IPTG. Cell growth proceeded 
for additional 12 h at 310 K. From lysed cells, the mNT 

proteins were purified using Ni-agarose and size exclusion 
chromatography as described in Refs. [10, 22].

Proteins reduction and in vitro stability kinetics 
measurement

100  μM mNT protein or H87C mutant were reduced 
beforehand by degassing the buffer (100 mM Bis–Tris 
(pH 6.0) and 100 mM NaCl) with nitrogen to remove 
the O2 from the solution. mNT/H87C proteins were then 
reduced using 1 mg of sodium dithionite. Immediately, 
the proteins (mNT and its mutant) were disposed in a 
96-well plate and sealed (to prevent gas exchange). The 
kinetics of the [2Fe–2S] cluster release of mNT and its 
mutant, H87C, was monitoring by measuring the specific 

Fig. 3   Redox-dependent lability of NEET proteins’ [2Fe–2S] clusters. 
A The reduced clusters remain stable through a large range of pH [16] 
(left). Oxidation allows their transfer to an apo-acceptor-protein(s) 
(right). B Proposed free energy landscape associated with the [2Fe–2S] 
cluster release, described by a generic Reaction Coordinate. Here, the 
lower free energy of the oxidized state is assumed based on our DFT 
calculations. TS for transition state, and Pred and Pox for products [apo-
NEET proteins along with the released cluster either to water solution 
[10] (in vitro) or to their cellular partners [11] (in vivo) in the reduced 
and oxidized forms, respectively]. The schematic is qualitative Fig. 4   Lability of [2Fe–2S] clusters of mNT at different tempera-

tures. The absorbance and stability of the clusters are monitored at 
their characteristic absorption peak of 458 nm. A At 310 K, the oxi-
dized clusters are highly labile and dissociate from the protein (red 
line), while the reduced clusters are stable (dark blue lines). B By 
increasing the temperature up to 318  K the latter induces a loss of 
their stability (from dark blue to light blue lines). The measurements 
have been taken at pH 6.0, which is closer to the physiological pH in 
pathologies like cancer [34] and renders the reaction in  vitro faster 
than that at pH 8.0
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absorption peak of the NEET protein, at 458 nm using 
Synergy™ H1 plate reader, equipped with a temperature 
control apparatus set to at 310, 313, 315 and 318 K.

Supplementary information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00775-​021-​01890-8.
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