000894690 001__ 894690
000894690 005__ 20240712113125.0
000894690 0247_ $$2doi$$a10.1021/acsami.1c05889
000894690 0247_ $$2ISSN$$a1944-8244
000894690 0247_ $$2ISSN$$a1944-8252
000894690 0247_ $$2Handle$$a2128/28680
000894690 0247_ $$2altmetric$$aaltmetric:106837291
000894690 0247_ $$2pmid$$apmid:34060318
000894690 0247_ $$2WOS$$aWOS:000662086600047
000894690 037__ $$aFZJ-2021-03352
000894690 082__ $$a600
000894690 1001_ $$0P:(DE-HGF)0$$aBärmann, Peer$$b0
000894690 245__ $$aScalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries
000894690 260__ $$aWashington, DC$$bSoc.$$c2021
000894690 3367_ $$2DRIVER$$aarticle
000894690 3367_ $$2DataCite$$aOutput Types/Journal article
000894690 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1632312130_4507
000894690 3367_ $$2BibTeX$$aARTICLE
000894690 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894690 3367_ $$00$$2EndNote$$aJournal Article
000894690 520__ $$aMXenes have emerged as one of the most interesting material classes, owing to their outstanding physical and chemical properties enabling the application in vastly different fields such as electrochemical energy storage (EES). MXenes are commonly synthesized by the use of their parent phase, i.e., MAX phases, where “M” corresponds to a transition metal, “A” to a group IV element, and “X” to carbon and/or nitrogen. As MXenes display characteristic pseudocapacitive behaviors in EES technologies, their use as a high-power material can be useful for many battery-like applications. Here, a comprehensive study on the synthesis and characterization of morphologically different titanium-based MXenes, i.e., Ti3C2 and Ti2C, and their use for lithium-ion batteries is presented. First, the successful synthesis of large batches (≈1 kg) of the MAX phases Ti3AlC2 and Ti2AlC is shown, and the underlying materials are characterized mainly by focusing on their structural properties and phase purity. Second, multi- and few-layered MXenes are successfully synthesized and characterized, especially toward their ever-present surface groups, influencing the electrochemical behavior to a large extent. Especially multi- and few-layered Ti3C2 are achieved, exhibiting almost no oxidation and similar content of surface groups. These attributes enable the precise comparison of the electrochemical behavior between morphologically different MXenes. Since the preparation method for few-layered MXenes is adapted to process both active materials in a “classical” electrode paste processing method, a better comparison between both materials is possible by avoiding macroscopic differences. Therefore, in a final step, the aforementioned electrochemical performance is evaluated to decipher the impact of the morphology difference of the titanium-based MXenes. Most importantly, the delamination leads to an increased non-diffusion-limited contribution to the overall pseudocapacity by enhancing the electrolyte access to the redox-active sites.
000894690 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000894690 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000894690 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894690 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000894690 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000894690 7001_ $$0P:(DE-HGF)0$$aHaneke, Lukas$$b1
000894690 7001_ $$0P:(DE-HGF)0$$aWrogemann, Jens Matthies$$b2
000894690 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000894690 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000894690 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b5
000894690 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b6$$eCorresponding author
000894690 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.1c05889$$gVol. 13, no. 22, p. 26074 - 26083$$n22$$p26074 - 26083$$tACS applied materials & interfaces$$v13$$x1944-8252$$y2021
000894690 8564_ $$uhttps://juser.fz-juelich.de/record/894690/files/acsami.1c05889.pdf$$yRestricted
000894690 8564_ $$uhttps://juser.fz-juelich.de/record/894690/files/2021-03-29_Paper_ACS.docx$$yPublished on 2021-06-01. Available in OpenAccess from 2022-06-01.
000894690 909CO $$ooai:juser.fz-juelich.de:894690$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000894690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000894690 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-2097-5193$$aForschungszentrum Jülich$$b5$$kFZJ
000894690 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b6$$kFZJ
000894690 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000894690 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
000894690 9141_ $$y2021
000894690 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894690 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894690 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894690 920__ $$lyes
000894690 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000894690 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000894690 9801_ $$aFullTexts
000894690 980__ $$ajournal
000894690 980__ $$aVDB
000894690 980__ $$aUNRESTRICTED
000894690 980__ $$aI:(DE-Juel1)IEK-1-20101013
000894690 980__ $$aI:(DE-Juel1)IEK-12-20141217
000894690 981__ $$aI:(DE-Juel1)IMD-4-20141217
000894690 981__ $$aI:(DE-Juel1)IMD-2-20101013