001     894690
005     20240712113125.0
024 7 _ |a 10.1021/acsami.1c05889
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/28680
|2 Handle
024 7 _ |a altmetric:106837291
|2 altmetric
024 7 _ |a pmid:34060318
|2 pmid
024 7 _ |a WOS:000662086600047
|2 WOS
037 _ _ |a FZJ-2021-03352
082 _ _ |a 600
100 1 _ |a Bärmann, Peer
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1632312130_4507
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a MXenes have emerged as one of the most interesting material classes, owing to their outstanding physical and chemical properties enabling the application in vastly different fields such as electrochemical energy storage (EES). MXenes are commonly synthesized by the use of their parent phase, i.e., MAX phases, where “M” corresponds to a transition metal, “A” to a group IV element, and “X” to carbon and/or nitrogen. As MXenes display characteristic pseudocapacitive behaviors in EES technologies, their use as a high-power material can be useful for many battery-like applications. Here, a comprehensive study on the synthesis and characterization of morphologically different titanium-based MXenes, i.e., Ti3C2 and Ti2C, and their use for lithium-ion batteries is presented. First, the successful synthesis of large batches (≈1 kg) of the MAX phases Ti3AlC2 and Ti2AlC is shown, and the underlying materials are characterized mainly by focusing on their structural properties and phase purity. Second, multi- and few-layered MXenes are successfully synthesized and characterized, especially toward their ever-present surface groups, influencing the electrochemical behavior to a large extent. Especially multi- and few-layered Ti3C2 are achieved, exhibiting almost no oxidation and similar content of surface groups. These attributes enable the precise comparison of the electrochemical behavior between morphologically different MXenes. Since the preparation method for few-layered MXenes is adapted to process both active materials in a “classical” electrode paste processing method, a better comparison between both materials is possible by avoiding macroscopic differences. Therefore, in a final step, the aforementioned electrochemical performance is evaluated to decipher the impact of the morphology difference of the titanium-based MXenes. Most importantly, the delamination leads to an increased non-diffusion-limited contribution to the overall pseudocapacity by enhancing the electrolyte access to the redox-active sites.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Haneke, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wrogemann, Jens Matthies
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 5
700 1 _ |a Gonzalez-Julian, Jesus
|0 P:(DE-Juel1)162271
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acsami.1c05889
|g Vol. 13, no. 22, p. 26074 - 26083
|0 PERI:(DE-600)2467494-1
|n 22
|p 26074 - 26083
|t ACS applied materials & interfaces
|v 13
|y 2021
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/894690/files/acsami.1c05889.pdf
|y Restricted
856 4 _ |y Published on 2021-06-01. Available in OpenAccess from 2022-06-01.
|u https://juser.fz-juelich.de/record/894690/files/2021-03-29_Paper_ACS.docx
909 C O |o oai:juser.fz-juelich.de:894690
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 0000-0002-2097-5193
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162271
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21