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a b s t r a c t 

Determining environmentally- and economically-optimal energy systems designs and operations is complex. In 
particular, the integration of weather-dependent renewable energy technologies into energy system optimization 
models presents new challenges to computational tractability that cannot only be solved by advancements in 
computational resources. In consequence, energy system modelers must tackle the complexity of their models 
by applying various methods to manipulate the underlying data and model structure, with the ultimate goal of 
finding optimal solutions. As which complexity reduction method is suitable for which research question is often 
unclear, herein we review different approaches for handling complexity. We first analyze the determinants of 
complexity and note that many drivers of complexity could be avoided a priori with a tailored model design. Sec- 
ond, we conduct a review of systematic complexity reduction methods for energy system optimization models, 
which can range from simple linearization performed by modelers to sophisticated multi-level approaches com- 
bining aggregation and decomposition methods. Based on this overview, we develop a guide for energy system 

modelers who encounter computational limitations. 
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. Introduction 

.1. Energy systems optimization 

The design and operation of energy systems with minimal envi-
onmental and economic impacts is highly complex, as energy supply
nd demand must be spatially- and temporally-balanced, with an ever-
ncreasing set of generation units, storage technologies, transmission op-
ions, and load management alternatives. The analytical solving of these
roblems is no longer feasible, and instead requires the use of mathemat-
cal energy system optimization models (ESOMs) to identify the optimal
esign and operation [1] . 

The theoretical limitation to the application of such optimization
odels is our ability to structure them in the form of a mathematical
rogram [2] . These programs have a broad range of applications; for
nstance, to determine train routes and schedules [3] , production plan-
ing [4] , emergency logistics [5] or, as previously mentioned, energy
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ystems [6] , while limited resources and time stress efficient solution
rocesses of those [7] . 

For the case of the energy sector, the concept to determine necessary
uture capacities using simple scenario-based models dates back to the
950s [8] . Simultaneously, the first concepts for achieving profitabil-
ty of energy trades such as peak-load pricing [9-11] have their origin
n the same decade. During the 1960s and 1970s, the rapidly growing
nergy demand, as well as an advancing liberation of the energy mar-
et [ 5 , 6 ], drove the development of more complex models in order to
aintain the security of supply at every point in time and stay prof-

table despite an increasing number of market competitors. As a result,
he first optimization-based models such as BESOM [12] emerged dur-
ng this period. During the 1980s, environmental awareness and tech-
ological advances first led to the consideration of renewable energy
ources [13] . As many renewable energy sources are both, intermittent
nd non-dispatchable, their consideration led to a third major develop-
ent of energy system modeling, namely the consideration of a finite
st 2021 
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umber of regions as well as multiple discrete time steps in order to
apture various demand and supply situations. 

In the realm of energy system their application can be distinguished
etween top-down ESOMs approaches that address economic, political,
nd social aspects, which directly drive the evolution of energy systems
14] , and bottom-up ESOMs that focus on detailed technological mod-
ling and specific system design. Well-known representatives of this
roup are e.g. LEAP [15] , EFOM [16] , BESOM [12] , MARKAL [17] ,
ESSAGE [ 14 , 18 ], IKARUS [6] , PERSEUS [19] , TIMES [20-23] and,

ecently, DESOD [24] , DER-CAM [25] , CALLIOPE [26] , OEMOF [27] ,
RBS [28] , PYPSA [29] and FINE [30] , while an overview of their type
nd application can be found in Appendix Table 5 . A broader review of
he scope and applications of bottom-up ESOMs is given by Groissböck
31] , Lopion et al. [6] , and Ringkjøb et al. [32] . 

.2. Increasing energy system complexity 

The quality and availability of the data required to parameterize
hese models are steadily improving, but the amount of input data re-
uired directly impacts the size of the related optimization problem and
ith it the requirement for processing resources and finding an optimal

olution within a reasonable timeframe [33] . The non-linearities of the
bjective or constraint functions, or a large number of system variables
nd uncertainties, can even risk the identification of a feasible solution
34] . 

In particular, this makes the integration of renewable energy tech-
ologies into the bottom-up ESOMs challenging due to their often perva-
ive nonlinear structures and an increased requirement for spatiotempo-
al resolution [35-38] . In addition to the required increase in the gran-
larity of the ESOMs, an increase in the connectivity of the different
nergy sectors must be considered, which is often referred to as ‘sector-
oupling’ [39-41] . As an example, the electricity sector becomes strongly
inked to the heat sector via heat pumps and other power-to-heat tech-
ologies. This coupling enables the construction of low-carbon energy
ystems with renewable electricity supply, but increases the intricacy
f these systems and significantly threatens their viability, let alone the
olvability of their corresponding models [32] . Thereby, data availabil-
ty is improving, allowing for much more accurate model representa-
ions. E.g., hourly weather data is available for multiple decades across
ontinental scales which represents huge amounts of data and decision
hich cannot be properly managed by simple mathematical programs. 

Thus, settling for sub-optimal or merely feasible energy system de-
ign solutions will be the rule rather than the exception if there is no
evelopment towards better computational tractability to solve energy
ystem models within an acceptable timeframe. 

.3. Development of computational resources 

While one would expect that no major improvements in the solving
f algorithms would be required in light of Moore’s Law and the corre-
ponding increasing availability of computer resources over the last few
ecades [42] , the computational tractability of mathematical programs
emains greatly limited [43] . 

This is caused by resource development: According to Moore’s Law,
he number of transistors on a chip doubles approximately every two
ears. While a larger number of transistors increases the processor’s
ower, which is measured in floating point operations per second
FLOP/s), the increased transistor density leads to greater power dis-
ipation. 

Power dissipation is not only dependent on the density of transis-
ors but is also a function of the third power of processor clock fre-
uency [44] . Therefore, packing many processors with a smaller clock
requency onto a CPU significantly reduces the energy dissipation while
eing capable of holding the theoretical CPU’s power constant. 
2 
As a result, the developmental frequency of new CPUs has been lev-
ling flat in recent years, as is displayed in Fig. 1 . Instead, the increased
umber of logical cores keeps transistor counts going. 

.4. Computational limitations of optimization solvers 

To take advantage of theoretical CPU power, this in return leads
o the necessity of decomposing the optimization problem into discrete
arts that can be either processed independently or which must com-
unicate minimal data between themselves. 

Nevertheless, the majority of the commercially-available optimiza-
ion solvers are not capable of exploiting these parallelized resources
n larger scales. While an increase from one to four CPUs enables a
ignificant reduction in the computational runtime [46] , Rehfeldt et al.
47] show that in some instances of large-scale energy system models,
he reduction of computational runtime stagnates at around eight com-
utational threads. Similar observations have also been made for the
eneral benchmarking of Mixed Integer Linear Programs, where no com-
utational runtime improvement can be observed from 4 to 12 threads
48] . 

Therefore, today’s supercomputers with a huge amount of cores, e.g.,
UWELS with 122,768 cores or Sunway TaihuLight with 10,649,600, are
ot capable of efficiently tackling this mathematical complexity, and
he advancements in computational resources cannot be accessed for
SOMs. 

.5. Objective and structure of the paper 

As a result of the constraint exploitation potential of computational
esources, methods to efficiently tackle and reduce the complexity of ES-
Ms are being continuously developed by the energy system research
ommunity. These can be either simple qualitative evaluations to iden-
ify irrelevant parts of the system models or sophisticated machine learn-
ng methods that systematically reduce the data input of energy system
odels. 

Historically, many different complexity management methods have
een individually introduced and benchmarked, with first attempts to
ompare different complexity reduction methods with respect to accu-
acy and computational impact, either for dispatch [49] or transmission
xpansion models [50] . 

Nevertheless, to the knowledge of the authors, a holistic and com-
rehensive overview of complexity management methods does not exist,
nd therefore this work reviews, evaluates, and qualitatively compares
he methods to each other. Thereby, we want to guide modelers who
ncounter computational limitations and identify research gaps to lay a
oundation for the future development of methods to reduce complexity.

The article is structured according to the process of system modeling:
irst, Section 2 provides an overview of what constitutes energy system
ptimization models and describes their complexity. Then, Section 3 dis-
usses methods to systematically reduce or manage the complexity of
nergy system models. Section 4 introduces possibilities to decompose
he resulting mathematical optimization models. The main conclusions
ill then be drawn in Section 5 . 

. Determinants of complexity 

Complexity is not an end in itself, although we can sometimes per-
eive it differently in the research community. Thus, it is important to
rst understand what drives and determines the complexity of an energy
ystem and its respective model. 

Therefore, in Section 2.1 , we define energy systems from a system-
heoretical perspective, identify energy system modeling as the process
f depicting these in Section 2.2 , compare different approaches to defin-
ng and measuring their complexity in Section 2.3 , and finally derive
onclusions about the dimensions and drivers of complexity in energy
ystem modeling in Section 2.4 . 
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Fig. 1. Development of transistor counts, fre- 
quency, and number of logical cores, based on 
Rupp [45] . 

Fig. 2. Definition of an energy system in a hier- 
archy of system levels with their interaction. An 
example can be a building energy supply system as 
system, which is embedded into a district supply 
system as macrosystem, while single components 
such as a heatpump are subsystems with different 
technology components in themselves. 
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.1. Definition of energy systems from a system-theoretical point of view 

Bertalanffy [51] defines systems as complexes of interacting ele-
ents that cannot be described by their elements alone. Today, this
roperty is referred to as emergence. Laughlin [52] specifies that by
ooking at the individual elements of systems, the overall system’s be-
avior is in many cases not recognizable [52] . Meadows et al. [53] ex-
and on existing definitions of systems with the dimension of a system’s
urpose. In a technical environment, systems are defined as a “set of
nterrelated elements considered in a defined context as a whole and
eparated from their environment ” (DIN IEC 60,050–351, DIN German
nstitute for Standardization, 2014). This settles the existence of a de-
ned system boundary and holism. 

The existence of system boundaries results in a system hierarchy:
ystems can be part of other systems. Basic elements form a first sys-
em, a so-called sub-system, which in turn is part of a larger system, a
uper-system [53] [54] . Skyttner [54] introduces a fairly rigorous and
hus well transferable definition of different levels of hierarchy: parts

uild units that form components, which can be summarized as modules

hat in turn build a subsystem as part of a system that is embedded in
 s

3 
 macrosystem. Fig. 2 summarizes the findings of this definition and
rovides an overview of the hierarchical structure of different system
evels. 

Based on, energy systems can be defined as special types of systems.
able 1 demonstrates the key aspects of two sample energy systems. 

Using the terminology introduced, we can state that system B serves
s a macrosystem to system A, and vice versa system A is a subsystem
f system B. Additionally, we can see that both systems comprise sub-
ystems, modules, and components. 

.2. Models to depict energy systems 

As experiments on energy systems themselves are not possible, or
nly possible at a very high cost, energy system models are frequently
sed tools to analyze system behavior [55] , while different types and
ategorizations of energy system models can be defined [ 6 , 56 , 57 ]. In
he scientific context, energy system models must be purposeful, repeat-
ble, unbiased, and make a novel contribution [58] . 

In general, a model is a simplified representation of reality for a
pecific purpose. It, therefore, possesses three central properties [59] : 
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Table 1 

Key aspects of two sample energy systems from a system-theoretical perspective. 

Energy system Heat supply of a building (A) Energy supply of a country (B) 

System boundaries Building’s exterior walls State borders 
Purpose of the system Meeting the heating needs of building users Meeting all energy needs of the country’s 

population 
System elements (excerpt) Technical components : heat supply, pipes, heat 

storage(s), heatpump, walls, windows, doors, etc. 
Agents: inhabitants, guests, etc. 

Technical components : power plants, electrical grid, 
storage, etc. 
Agents : consumers, producers, financiers, etc. 

Fig. 3. Illustration of the modeling process as a selected and simplified representation of the reality. For the example of designing a building supply system, the 
possible grid supply options such as a heating network of the district system as macrosystem need to be considered in a model depiction at the system boundary, 
while certain subsystems such as the heatpump are simplified to single elements with a described behavior, e.g., the coefficient of performance. 
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1 Representation: a model replicates a part of reality. 
2 Simplification: a model does not replicate all properties of the orig-

inal. Rather, it is designed to replicate only those that the modeler
deems relevant. 

3 Pragmatism: a model has a purpose dictating what part of reality it
represents and how this is achieved. 

Overall, energy system models try to serve a purpose, i.e., derive
 specific decision by representing the most relevant parts of the an-
lyzed systems and introducing necessary simplifications. Thus, the
odel seeks to depict the emergent behavior of the energy system un-
er investigation, i.e., output variables and their dependence on external
ircumstances in the form of input variables, as is illustrated in Fig. 3 . 

.3. Complexity in energy systems and energy system models 

In the following, we assess what drives the complexity of the original
ystem and its simplifying model, whereby the definitions of measures
or complexity are introduced. 

In general, concepts for a formal description of complexity have
een derived from system theory [60] , mathematics, and the natural
ciences [61-64] . More recently, there have been various attempts to
efine complexity [ 65 , 66 ]. To this day, however, no concise and com-
rehensive definition of the concept has been established. Rather, defini-
ions of complexity are highly context-dependent and driven by certain
se cases. Given the sheer amount of different definitions and measures,
loyd [67] opened a ‘ non-exhaustive list ’ that comprises over 40 differ-
nt ways to describe complexity. This accords to the findings of Mitchell
68] (p. 301) that show that researchers focusing on complexity widely
gree that we cannot yet characterize the phenomenon of complexity in
 rigorous way. 

According to the physicist Lloyd [67] , three prevailing questions gov-
rn scientific concepts of complexity: 

• How hard is it to describe the system? 
• What is its inherent degree of organization? 
•
 How hard is it to create a model? 

4 
The first two principles are much in line with the main character-
stics of complexity, as described in the economic management litera-
ure [69] . Here, complexity is characterized by variety (i.e., the amount
nd kinds of elements in a system), connectivity (i.e., the amount and
inds of relationships between the elements), and dynamics (i.e., unpre-
ictability). To handle complexity, three basic concepts are outlined in
he management literature [70] : 

1 Complexity reduction : reduce existing complexity by reducing the
number of existing parts, variants, and processes, i.e., the number
of variables and interdependencies in the system. 

2 Complexity control : efficient control of unavoidable complexity
through appropriate measures, i.e., appropriate anticipation of dy-
namics. 

3 Complexity avoidance : avoid an increase in complexity beyond what
is necessary. 

It becomes clear that the definitions of complexity are very well
ransferrable to energy systems per se , whereas the measures to manage
omplexity mainly refer to energy system models and thus to the third
uestion by Lloyd [67] . Therefore, we must distinguish the complexity
f the underlying energy system and modeling complexity. 

.3.1. Complexity in energy systems 

Based on complex system theory, the main characteristics of complex
ystems can be transferred to energy systems [ 58 , 68 , 71 ]: 

1 The existence of agents in the system; 
2 Networks that link different agents and physical components; 
3 Dynamics in the sense of changes in time that might include feedback

mechanisms; 
4 Self-organization, meaning autonomous adaptation towards external

changes; 
5 Path-dependency, including lock-in effects; 
6 Emergence that describes an emerging behavior in the system’s

macro structure; 
7 Co-evolution regarding co-existence and interdependence with other

systems; 
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Table 2 

Algorithmic complexity classes to describe how runtime or memory growth with 
the size of the input data (excerpt). 

Constant Logarithmic Linear Polynomial Exponential 

Big O notation O(1) O(log n) O(n) O(n a ) O(2 n ) 
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8 Learning and adaption based on experimentation that leads to im-
proved functionality of the system. 

This list, in combination with the overview on definitions and mea-
ures for complexity, allows two main conclusions to be drawn: first,
nergy systems must be regarded as complex systems; second, the pre-
ailing complexity of energy systems is currently increasing as their va-
iety, connectivity, and dynamics grow. 

.3.2. Complexity in energy system models 

According to Billings [72] , the identification of relevant systems to
odel, i.e., the definition of system boundaries and relevant interdepen-
encies between input and output variables, is a part of system theory.
s is introduced above, models simplify and depict real systems. Thus,
e conclude that as the complexity of energy systems increases, the

omplexity of energy system models that are intended to reflect their
mergent behavior must also increase in turn. 

Focusing on energy system models, the third question raised by Lloyd
67] becomes particularly important: how hard is it to create a model?
he way this question is formulated leads to the conclusion that not only
ust the process of solving the model be considered but also the entire
rocess, starting with collecting the necessary input data, followed by
efining, implementing, and running the model and finishing with an
nterpretation of results. 

Based on our synthesis regarding system theory and complexity re-
earch, we can now distinguish three different levels of complexity that
re relevant to energy system modeling: 

1 The complexity of the energy system itself (the left side of Fig. 3 ); 
2 The complexity of the part of the energy system to be investigated,

i.e., the scope of the analysis (center of Fig. 3 ); and 
3 The resulting computational complexity of the model (right side of

Fig. 3 ). 

While it is hard to find ubiquitous and quantitative measures for
he first two types of complexity, it is more straightforward to measure
he emergent computational complexity of the model. For the latter,
e can distinguish two different approaches: hardware-dependent mea-

ures such as runtime and memory usage emergent in the level of com-
lexity [73] , or hardware-independent measures for algorithmic com-
lexity in the sense of Big-O -notations, also referred to as Bachmann-

andau notation or asymptotic notation [74] . This measures the com-
lexity of a given problem by means of the fastest formulation of a so-
ution algorithm based on computer models such as the (deterministic)
uring Machine (Turing, 1937). Using this notation, algorithms can be
lassified by complexity [ 75 , 76 ]. These classes provide upper limits to
he increase in algorithmic complexity with the size of the input data,
s is illustrated in Table 1 . 

Table 2 
Furthermore, algorithms can be divided into the categories of ef-

ciently solvable (e.g., O(n 2 ) ) and inefficiently solvable (e.g., O(2 n ) )
roblem classes [ 77 , 78 ], where the latter class is often referred to as

intractable’ or NP-hard problems. Another class is defined as ‘advanta-
eously parallelizable’ problems [79] . The solution to problems of this
lass can be significantly simplified by implementing a shared mem-
ry. Overall, the algorithmic complexity definition has the advantage
f being independent of constantly improving hardware performance.
owever, this only provides upper limits for the scalability of the algo-

ithm with the size of the input data and therefore does not allow for
alid comparisons across the complexity classes. 
5 
.4. Accuracy and complexity in energy system modeling 

As a result of the insights summarized above and in accordance with
he findings by De Carolis et al. [80] , we can conclude that there ex-
sts a trade-off between accuracy and complexity within energy system
odels: the more the modeler abstracts from the real system, the more

he model strays from reality and the less its behavior reflects the real
ystem’s complexity. However, system theory also shows that it is some-
imes sufficient to reflect the emergent behavior of complex systems and
t is not always necessary, or sometimes even impossible, to reproduce
his behavior by depicting all of a system’s elements [52] . We can fur-
her conclude that modelers must indeed resist the temptation to con-
entrate exclusively on computational complexity. It is also important
o bear in mind the underlying system’s complexity drivers, as they will
ltimately govern the complexity of the analysis. Here, the choice of
ystem boundaries, depth of modeling, and the level of detail of the de-
icted interdependencies determine the complexity and accuracy of the
odel. 

The trade-off between complexity and accuracy has been analyzed,
.g., by Bale et al. [81] , leading to the conclusion that it also influences
he communicability of results to a non-scientific audience (for instance
olicy-makers). Additionally, studies from different fields of research
ave recently focused on the trade-off between the accuracy and com-
lexity of models [49] and did not find a general superiority of more
omplex models, as in cases of overfitting in the case of poor-quality
nput data [ 82 , 83 ]. Another direction of research has focused on identi-
ying optimal solutions within the trade-off between computation time
as a proxy for complexity) and model accuracy [84] . Finally, Brooks
nd Tobias [85] claim that there is a scarcity of research focusing on
hoosing the best-fitting models in terms of performance to depict the
nderlying system. They introduce four measures to quantify model per-
ormance: the quality of results, the future usability of the model, the
erification and validation of model results, and the required resources.

It is thus imperative to identify those areas in which the trade-off
s particularly favorable and those elements that considerably increase
he complexity of a model without markedly increasing the accuracy of
ts results. In other words, it is necessary to: (1) identify the complexity
rivers of energy system models; and (2) choose the right level of com-
lexity for the present scope of analysis. For the latter task, a tension
rises between the claim for complexity by Stirling [86] and the call
or reductionism and ‘ parsimony ’ in energy system models by De Carolis
t al. [80] . 

. Methods for complexity reduction 

While the complexity of the energy system itself cannot be influ-
nced, and that of the modeling process depends on the expertise of
he modeler, computational complexity can be systematically altered and
uantified. 

The dimensions to reduce complexity of ESOMs are illustrated in
ection 3.1 , while the subsequent sections ( Section 3.2 , Section 3.3 ,
ection 3.4 , and Section 3.5 ) describe possibilities for reducing these. 

.1. Dimensions to reduce complexity 

As discussed in Section 2 , a general definition of complexity dimen-
ions is challenging. From a mathematical point of view, however, three
asic factors have a direct impact on computational complexity, as is
llustrated in Fig. 4: The total size of the optimization model, the opti-
ization problem class, and the connectivity within the model. 

The scope, spatial resolution, and temporal resolution of the ESOM
etermine the model size and thus the size of the matrix as a combi-
ation of constraints and variables: It can be influenced by the number
f considered time steps, sometimes referred to as time slices or snap-
hots [38] , in operation or investment decisions to account for their
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Fig. 4. Complexity dimensions expressed by sketching the objective and constraint matrix. The ‘model size’ depicts the general number of variables and constraints. 
The ‘problem class’ is derived from the type of variables (continuous, binary, or integer) and the type of constraints (linear, nonlinear). The ‘connectivity’ describes 
the linkage between the variables and constraints. 
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ynamic behavior. Its cardinality is determined by the temporal reso-
ution, e.g., sub-minutely [87] , sub-hourly [ 88 , 89 ], or, in most cases,
ourly [18] , and the observation period can range from a number of
ypical days to a time series spanning decades [37] . We discuss the pos-
ibilities for reducing the temporal scale in Section 3.2 . Likewise, the
patial and technological resolution directly affects the model size and,
espectively, the size of the network. In particular, a high number of
patially-distributed nodes is required for optimal grid design [ 30 , 37 ,
0 , 91 ], but also for an adequate consideration of renewable supply
echnologies [92] . The options to lower the spatial scale of ESOMs will
e framed in Section 3.3 . Nevertheless, even single node ESOMs can
esult in large-scale optimization problems if a high resolution of tech-
ology types and sectors is considered [ 93 , 94 ], as if technical solutions
or heating, cooling, electricity, and industrial processes are regarded si-
ultaneously, resulting in large networks. However, the latter strongly
epend on the system’s scope and the research question, wherefore no
ystematic complexity reduction methods currently exist to the authors’
nowledge. 

To achieve large-scale ESOMs, Linear Programs (LPs) are primarily
sed as a problem class [ 37 , 40 ], which combine linear constraints with
 continuous variable set. Their convex nature combines with histori-
ally significant efforts to develop efficient solving algorithms with poly-
omial solving time. As discussed above, they are especially required
o design large-scale, bottom-up energy systems supplied by renewable
ower [14] . Recent works have also shown that convex Quadratic Pro-
rams (QP) are suitable for this problem scale [95] . Specific Mixed-
nteger Linear Programs (MILPs) with a small amount of binary or in-
eger variables for the technology choices [ 30 , 90 , 91 , 96-99 ] allow for
he optimization of larger networks for a few time steps. Yet, every bi-
ary or integer variable leads to a cut in the solution space, resulting in
 non-convexity and an np-hard problem. Nonlinear performance func-
ions, e.g., the part-load efficiency of a fuel cell, determine a non-convex
et of operational states, and with it, a non-convex optimization prob-
em, usually resulting in Mixed-Integer Nonlinear Programs (MINLPs).
his problem class is computationally-intensive, which limits the size
f the considered systems and/or the temporal observation time. Of-
en, they are simplified to a MILP by either modelers [100] or by the
olving algorithm itself [101] . The systematic simplification of technol-
gy models by avoiding nonlinearities or discontinuities and the related
on-convexity of the program is habitually performed by modelers and
ill be discussed in Section 3.4 . 

The connectivity of an energy system model is indicated by the
ensity of the constraint matrix for the linear case. An energy system
ith strong spatio-temporal linking expressed by dense transmission
etworks, operational dynamics such as states of storages, or invest-
ent dynamics, leads to high connectivity. For example, the modeling

f a hierarchical order of time grids [102] [90] [103] [104] leads to
 small model size but has a strong linkage within the model, which
6 
akes it hard to decouple parts of it, making it challenging to solve
ifferent parts within a parallelized computer infrastructure. For single-
ore performance, this is challenging to generalize: As Tejada-Arango
t al. [105] show, implementing operational characteristics comes with
 trade-off between compactness (i.e., increasing the model size) and
ightness (i.e., the similarity between the solution search space of the
ILP and the relaxed LP) [106] . They find that ramping constraints in

articular positively impact the solving time by increasing the tightness.
therwise, as in the case of dispatch models, the weak connectivity is
ften neglected by temporally decoupling the model in favor of being
ble to solve a large-scale network for different time steps in a parallel
omputer infrastructure [83] . For a more limited model scope, how-
ver, it is possible to include dynamic time-coupling [107] . The options
o tackle this connectivity from a modeler’s perspective are discussed
n Section 3.5 and lead to the possibility of solving and decomposing
SOMs, as described in Section 4 . 

With the help of this definition of the computational complexity of
SOMs, we can now describe how the original complexity drivers of
nergy systems, published by Bale et al. [58] , relate to the computation
f their virtual representatives in Table 1 . 

Table 3 

.2. Temporal aggregation 

As introduced above, the temporal complexity of ESOMs is spanned
y the temporal resolution and the considered time horizon [38] : 

• A long time horizon is crucial for the generation of expansion-
planning models to appropriately capture transformation pathways
[6] , technical learning rates [108] , or other long-term effects such as
economic, social, or environmental processes that gain importance
at different time scales [109] . 

• In contrast, a high temporal resolution is crucial for considering the
rising share of highly intermittent renewable energy sources, e.g., in
cost-optimal unit commitments [ 18 , 110 ]. 

The basic idea of temporal aggregation is to represent the time series
f demands, supplies, or residual loads with a large number of time steps
y a smaller number of time steps [38] . This is achieved either by the
irect reduction of the temporal resolution, as discussed in Section 3.2.1 ,
r by representing time series with a reduced number of typical periods,
xplained in Section 3.2.2 . The general concept of these two approaches
s highlighted in Fig. 5 . 

.2.1. Decreasing the temporal resolution 

The simplest way to reduce the overall number of time steps is to
ecrease the temporal resolution directly. As is illustrated in the upper
art of Fig. 5 , this can either be done in a regular manner, referred to
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Table 3 

A holistic list of complexity drivers in energy systems and their assumed impact in computational representations. 

Complexity drivers in energy systems Drivers for computational complexity 

Agents in the system Increased model size (more nodes to depict) and more complex problem class to 
depict behavior 

Networks that link different agents and physical components Increased model size (more connections to depict) 
Dynamics in the sense of changes in time that might include feedback mechanisms Increased model connectivity and increased model size to resolve those dynamics, 

maybe even the need for a more complex problem class due to non-linearities 
Self-organization, meaning autonomous adaption to external changes Increased connectivity of the model, perhaps even the need for a more complex 

problem class due to non-linearities, model size due to complex behavior 
Path dependency including lock-in effects Increased connectivity of the model and the need for a more complex problem class 

due to non-convexity 
Emergence behavior of the system’s macrostructure More complex problem class due to non-linearities 
Co-evolution regarding co-existence and interdependence with other systems Increased model size (need to depict interactions with macrosystems) 
Learning and adaption based on experimentation that leads to improved system 

functionality 
Increased model dynamics and a more complex problem class due to non-linearities 

Fig. 5. Overview of the possibilities for reducing the temporal complexity in an 
discretized time space. 
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s down-sampling, or in an irregular manner, based on the similarity of
djacent time steps, called segmentation. 

For down-sampling, a predefined number of adjacent time steps is
aken and represented by its mean, e.g., by taking the average of every
wo time steps. This leads to an underestimation of the time series’ vari-
nce of the raw input data and can have a severe impact on the result
f energy system optimization models, such as for systems with a high
hare of renewable energy. Here the necessary capacities to be built are
nderestimated [37] , or the self-consumption rate of energy systems, in-
luding feed-in from photovoltaic and battery storage are overestimated
 36 , 87 ], and also counts for feed-in from wind turbines [110] . 

A more advanced method is segmentation, the merging of adjacent
ime steps based on their mutual similarity. This approach leads to ir-
egular new time step lengths, as highlighted by the green bars in the
pper part of Fig. 5 . Numerous approaches exist [38] : Some favor par-
itional clustering [111] or agglomerative clustering [112] under the
onstraint that only adjacent time steps are to be clustered, while other
pproaches include MILP optimizations to merge adjacent time steps
hile minimizing the deviation from the original time series [113] . 

.2.2. Decreasing the number of periods 

The concept of typical periods is that not only might adjacent time
teps within a series be similar, but also entire periods within the time
eries. This is illustrated in the lower part of Fig. 5 , where periods 1 and
 are merged based on their comparable profiles. 

The similarity between different periods is achieved by cutting nor-
alized input time series into typical periods and aligning them in a
 [

7 
issimilarity matrix, which is illustrated in Fig. 6 . Each row can be in-
erpreted as a hyper-dimensional candidate point for the clustering pro-
edure. 

Clustering algorithms generally strive to maximize the intra-cluster
imilarity of candidate points while maximizing inter-cluster dissimilar-
ty by allocating data points to different clusters [114] . In the realm of
ime series clustering, this means that “homogeneous time series data
re grouped based on a certain similarity measure ” [115] . The cluster
enters or selected data points are then chosen as representatives or
typical periods ” [116-118] . 

While one of the first cluster method applied was fuzzy c-means
lustering [119] , the most common cluster methods use Euclidian dis-
ance as a metric, k-means or Ward’s [120] , hierarchical greedy clus-
ering algorithms with either medoids (e.g., existing typical periods) or
eans (e.g., synthesized typical periods) as representatives, or the MILP

ormulation of the k-medoid algorithm [121] , which searches for repre-
entative days that minimize the distance to all of the other data points
f the respective cluster [ 116 , 118 , 122 , 123 ]. 

Recently, new clustering algorithms were introduced and tested on
nergy system models that take temporal shifts into account for a certain
ias along the time axis, such as the k-shape algorithm, which was intro-
uced [124] and applied to the thermal energy demands of university
uildings [125] and electricity prices [126] . 

Other publications have focused on daily duration curves as candi-
ates for clustering and removing intra-day order [ 30 , 127 ]. Another
ethod is to directly approximate certain values in a yearly duration

urve and find a combination of daily duration curves whose linear com-
ination minimizes the error to the original duration curve [ 35 , 128 ,
29 ]. This method is also capable of taking the fluctuation and variance
f duration curves into account [130] . However, these methods widely
eglect the intra-daily order of typical days and therefore may fail to
odel the intra-day dynamics. 

Moreover, the issue of an appropriate number of clusters is the sub-
ect of current research. Although a vast number of clustering indicators
115] such as, for example, the silhouette score [ 131 , 132 ] and distor-
ion sum ratios between homogeneously distributed data samples and
eal samples [ 133 , 134 ] exist and have been applied as indicators for
 sufficient number of typical periods [ 111 , 135 ], no set of indicators
as proven to be superior over all of the others. A reason for this could
e that many input time series describe continuous phenomena, which
eans that the sample points are not well-separated from each other,

nd so the clustering error simply monotonically decreases with an in-
reasing number of typical periods [ 111 , 136 ]. 

Last but not least, it is to highlight that clustered periods do not
espect the chronology of typical periods and therefore require alterna-
ive description of dynamics between the periods, e.g., for the consid-
ration of seasonal storages. Some solutions exist [ 104 , 137 ] but they
re challenging to implement and can alter the results of the analysis
138] wherefore proper validations are required. 
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Fig. 6. Dimensionality reduction step to transform a set of normalized time series to candidate periods in a dissimilarity matrix which is used as basis for the 
clustering process. 
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.2.3. Extreme periods 

The design of energy systems strongly depends on extreme periods,
hich are crucial to operational feasibility and surplus capacities, as
ell as the operational costs for which the prevalence of the different

ypical periods is important [139] . 
A common method is to define days containing the peak or minimum

alue of a certain attribute as an extreme period, e.g., maximum demand
ays or minimum supply days with respect to solar or wind energy pro-
uction [ 117 , 118 , 140 ]. Moreover, other authors have noted that not
nly are single extreme values of interest for the robustness of optimiza-
ions, but also cumulative extreme values, such as days with cumulative
eak demand [ 141 , 142 ]. Apart from that, typical days can also be con-
idered an extreme period if they contain the peak or minimal demand
ithin a season [143] . Finally, it is worth noting that other heuristics
ave also been proposed that focus on maintaining a certain variance
r gradient within a clustered time series [122] or by directly importing
hem into the optimization problem of the clustering algorithm [139] . 

Recently, other methods have proposed tackling the problem of un-
erestimating the variance of time series with respect to clustering in
eneral. Some add iteratively feasible time steps if the operation of an
nergy system optimized for an aggregated time series is not feasible for
peration with the original time series [144] while others use synthe-
ized variations [ 18 , 142 , 145 ] in time series and simulate the operation
f energy systems designed for one scenario with all of the others [142] ,
r re-run the optimization, including the most expensive time steps from
he first optimization run [ 145 , 146 ]. 

Moreover, aggregation methods have been introduced that define
he upper and lower bounds of the original optimization problem and
ry to arrive at the solution by iteratively increasing the number of time
teps [147-150] . 

All things considered, three main directions can be identified in the
evelopment of more robust results from energy system optimizations:
euristic approaches that focus on preserving the important character-

stics of the original time series by directly preserving it in the aggre-

s

8 
ated time series, searching for the most robust energy system by creat-
ng multiple scenarios and systematic approaches based on aggregated
nput data to define the upper and lower bounds for the objective of
ully-resolved energy system optimization 

.3. Spatial aggregation 

The spatial complexity of energy system models is determined by
wo aspects, namely the spatial resolution, hence the number of defined
odel regions, and the representation of these, i.e., the number of tech-
ologies or agents per model region. Fundamentally, we define model
egions as geometries containing energy system components. These re-
ions are connected to other regions by inter-regional connections, re-
erred to as a network or grid. Additionally, the spatially-distributed en-
rgy system components within regions are connected. However, these
ntra-regional connections are generally assumed to be copper plates,
uch that the data of all energy components for each region are gener-
lly simply aggregated [50] . Given different research questions and the
esulting requirements concerning the level-of-detail of these energy sys-
ems, spatial resolution and representation varies significantly and thus
equires the spatial aggregation of the available energy system data. 

Spatial aggregation generally comprises both the grouping of regions
ith similar properties on the one side [151] and the representation of

he regions’ information, such as time series within defined regions, us-
ng aggregate functions on the other [152] , as is seen in Fig. 7 . Thus,
he grouping determines how to aggregate the network, whereas the
epresentation determines how to aggregate the technologies within the
ewly created regions. Therefore, aggregation functions are required to
epresent the data of the initial set of regions for the newly reduced re-
ion set. These aggregate functions range from simple representations
ith a sum, mean, min, or max [153] , to more advanced functions such
s median, mode, and rank [153] , to complex aggregation functions in
he form of algorithms, such as network reduction algorithms, as de-
cribed by Hörsch and Brown [154] . 
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Fig. 7. Difference between the aggregation of a network of nodes and different technologies inside a modeled node. 
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So far, the grouping was primarily based on administrative bound-
ries, with current energy systems analysis studies with a European
cope mostly being based on national regions, with national time series
f hourly temporal resolution [32] . The scope of these studies ranges
rom electricity-only scenarios [155] to sector-coupled ones [ 92 , 156 ,
57 ]. 

Initial studies have been conducted to analyze the impact of spa-
ial aggregation on energy systems analysis based on grid constraints
 154 , 158 , 159 ]. Whereas Hörsch and Brown [154] derive a clustered
quivalent network with the help of k-means based on the geometric
istance of load and conventional generation, Svendsen [159] clusters
ased on calculated power transfer distribution factors, while Fazlollahi
t al. [160] cluster based on demand patterns. 

Furthermore, Scaramuzzino et al. [161] analyzed a grouping based
n NUTS3 regions using multiple indicators to identify similar regions
n terms of energy potential indicators, such as onshore wind energy and
hotovoltaics, as well as non-energy related indicators, such as GDP and
opulation density. On the other hand, Siala et al. [162] analyzed group-
ngs based on highly resolved renewable energy potential and demand
ata. On the demand side, clustering algorithms to represent similar
patially-distributed buildings [38] or industrial sites can lead to higher
uality energy demand representations. Another example is the aggre-
ation of municipalities [163] that is used to determine a representative
et of municipalities that can each obtain its individual energy supply
esign. Fig. 8 summarizes the different existing spatial aggregation ap-
lications in different layers but also frames the research gap of defining
patial aggregation in terms of a holistic consideration of all layers that
re relevant for energy system design and operation. 

The impact of spatial aggregation on computational complexity was
oted by Cao et al. [50] . The results show a significant dependence on
he number of regions for both computational indicators and the ob-
ained solution in terms of aggregated costs. This motivates further in-
estigation of spatial aggregation techniques to determine an appropri-
te number and selection of regions as a function of the complexity of
he subsequent energy system optimization. Nevertheless, it is important
o distinguish between an aggregation in an integrated ESOMs context
 154 , 162 ], in contrast to an aggregation of independent entities that
ecome separately optimized [ 163 , 164 ]. For the latter, only a linear
omputational complexity reduction can be achieved relative to the ag-
regation rate, but their representation can be more easily achieved, as
he connection between the candidates does not need to be considered.
9 
In contrast, for connected systems, aggregation results in information
oss due to representation inside every region, and because of the balanc-
ng effects between different regions that can lead to an underestimation
f data variabilities. In particular, the copper plate assumption for intra-
egional connections results in an externalization of costs. These could
e either explicitly additionally accounted for [160] or neglected [154] .
n alternative would be to internalize them using respective representa-

ion functions. On the supply side, the spatial distribution of renewable
nergy sources with many different turbine designs – on- or offshore,
ptimized for full-load hours or maximal generation - and Photovoltaic
ystem configurations – orientation and inclination – require sufficient
epresentation as well, for example by clustering similar capacity factor
ime series inside every grouped region. All in all, the information loss
hat is relevant for the energy system optimization must be systemati-
ally identified and minimized. 

.4. Reduction of the level of detail in modeling system behavior 

The mathematical description of the system operation determines
he resulting problem class of the ESOM. While accurate modeling would
n general lead to a MINLP, the technical characteristics – that in reality
ould limit flexibility in the operation or the choice of the technical

omponents – are simplified or omitted, leading to an MILP or even an
P. 

Some of the general simplifications can be generalized for ESOMs
nd are grouped into four categories: 

1) Constraints that are continuous nonlinear (e.g., specific investment
costs that decrease with the unit size) can be linearized using dif-
ferent linearization methods that are not mathematically equivalent
to the original equation but rather an approximation with a linear
formulation [ 101 , 165 ]. 

2) Non-continuous constraints, such as either-or, if-then-else constraints,
absolute value or minimum value functions can be linearly imple-
mented in optimization models using the so-called Big-M method
[166-169] and natively result in an MILP, as the Big-M method adds
a binary variable and a sufficiently large arbitrary value M to the
model. 

3) Multi-dimensional functions of the form f(x 1 ,x 2 ) (e.g., efficiencies that
depend on the realized size of a generation unit and the operational
load level) can be linearly implemented by fixing all but one variable
to predefined values and precomputing the results [165] . 
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Fig. 8. Illustration of different spatial layers that should be considered in the spatial definition of energy system models. 

Table 4 

Categories of nonlinear and non-continuous constraints in energy system optimization models and respective linearization methods. 

Type Example in ESMs Linearization Method 
Resulting 
Problem 

Assessment of the computational 
burden References 

Continuous Specific investment costs Binary Steps / SOS Type 
1 

MILP High: Adds multiple binary 
variables 

[165] 

Piecewise-Linear 
Function / 
SOS Type 2 

MILP High: Adds multiple binary 
variables 

[165] 
[101] 

Intercept slope MILP Medium: Adds a single binary 
variable 

[171] 

Constant Value LP Low: Nonlinearities are omitted 
and no binary variables are added 

[172] 

Non-continuous Minimum loads Big-M MILP Medium: Adds a single binary 
variable 

[173] 

Nested function Efficiency depends on 
the load and unit size 

Precomputing with 
binary steps 

MILP Low: Simplified representation by 
the discretization of continuous 
nonlinear relationships without 
adding binary variables 

[165] 

Integer product Total load of unit group Substitution MILP Low: Simplified representation 
using discretization without 
adding binary variables 

[170] 
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4) Finally, products that multiply a continuous with an integer variable
can be substituted by a continuous variable and post-processed to
the original variables [170] . 

Table 2 displays a summary of some linearization methods and
he resulting problem formulation for the four types of nonlinear con-
traints, while their application is discussed in the following section for
peration and investment modeling in ESOMs. 

Table 4 
We discuss the implications of operation modeling in

ection 3.4.1 and investment modeling in Section 3.4.2 . 

.4.1. Level of detail in the operation of system components 

Energy conversion, transmission, or storage units underlie several
echnical restrictions. Common technical restrictions applied in energy
ystem models include part-load-dependent efficiencies (PLDE), mini-
um part loads, start-up and shut-down costs, minimum down- and
p-times, as well as ramping rates [49] . The PLDE is the relationship
etween the output and input energy during an energy conversion pro-
10 
ess, as illustrated in Fig. 9 . The PLDE depends on the load level of the
onversion unit, making the relationship a continuous nonlinear func-
ion. 

This nonlinearity can be approximated using various methods. The
se of a single constant value (e.g., the PLDE at full load) is based on
he simplified assumption that no part load dependency exists, result-
ng in a simple LP formulation. This is the most trivial but also least
omplex way of linearizing PLDE, and is commonly performed in en-
rgy systems analysis [ 174 , 175 ]. Binary steps and piecewise-linear ap-
roximations introduce binary variables [176] . An intercept-slope only
dds one binary variable per unit to the model; however, it can only
e applied to certain bounded functions. The more sections the original
unction is divided into the more accurate and the more complex the
pproximation becomes. Special ordered sets (SOS) of Type 1 or Type
 can be used to implement binary step or piecewise linear approxima-
ions [177] . New approaches consider even piecewise quadratic approx-
mations of the PLDE, resulting in Mixed Integer Quadratic Constrained
rograms (MIQCP), but could not be proven to outperform conventional
ILP formulations [178] . 
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Fig. 9. Possibilities for modeling the input-output performance operation of an 
energy system technology and the resulting mathematical program type. 

Fig. 10. Typical dynamic constraints of a technology operation and their math- 
ematical program type. 
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Conversion units usually only run above a minimum load, e.g., for
urbines or engines of 20% to 50% of their rated power [179] . This dis-
inction of the load being above or below the minimum load is modeled
ith a binary variable [173] in combination with the Big-M method and

s also illustrated in Fig. 9 . 
The starting up or shutting down of a unit can cause additional fuel

nd depreciation costs [179] . To add these costs to the cost function
f an optimization problem, binary variables for the unit status start-

p and shut-down must be introduced in addition to the aforementioned
inary variables for the on and off statuses. To set the cost, the informa-
ion on the change in the operating state between two consecutive time
teps is required [180] . This is realized by connecting the binary vari-
bles through dynamic constraints. Some units must remain shut down
or a minimum downtime or kept running for a minimum uptime. This
dditional required information on the unit’s status from previous time-
teps entails a dynamic constraint, as is shown in [106] and illustrated
n Fig. 10 . 

The rate with which a unit alters its load can be restricted by upper
nd lower ramping limits due to technological constraints. In addition,
amping up and down can impose costs for which an additional con-
inuous variable is introduced that is added to the cost function [181] .
estricting the load alternation between consecutive time steps requires
11 
ynamic constraints. Costs for ramping up or down require the already
ntroduced binary variables in the case where they are to be distin-
uished from start-up and shut-down costs. 

In addition to the technical complexity, with an increasing amount
f deregulated electricity markets, there is also an increased effort in
athematical modeling of related sociatal systems, see, e.g., [182] , such

s competitive equilibrium in electricity markets to predict the market
learing price (MCP) and respecting its related uncertainty in systems
peration [183] . 

.4.2. Level of detail in investment cost modeling 

Additional to the operational constraints of the systems, Fig. 11 illus-
rates the challenge to model the choice and scaling of the technologies.

The choice of technology unit available on the market, including
heir related price and performance, would introduce many single bi-

ary or integer variables [ 100 , 144 , 184 , 185 ]. This is computationally
hallenging, but closest to reality. Especially in small-scale energy sys-
em models, in which only a small discrete number of components has to
e chosen for achieving cost-optimality, discrete investment decisions,
hich is also referred to as “lumpy investments ” [ 20 , 186 ] can have
 considerable impact on the cost-optimality. Further, this also applies
o investments with fixed and size-independent cost contributions, e.g.
evelopment expenses. 

Aggregated energy system models on a global or national scale do
ot require this detail, as they rely on abstract perspectives of the system
nd often model technology scaling with continuous linear cost functions
 40 , 93 , 187 , 188 ]. 

Nevertheless, the consideration of learning effects in macroeconomic
odels determines nonlinear cost curves that reduce the specific costs of
 technology with an increase in its capacity. These are especially com-
on in national or global energy assessment models with small tempo-

al resolutions [189] . To combine those with bottom-up approaches, this
on-linearity can be linearly approximated piecewise [170] . In contrast,
nother possibility for aggregated energy system models is to introduce
 convex quadratic cost term that increases the specific investment cost
or higher capacities [95] . The idea is that small capacities can be ex-
loited at low cost, e.g., wind turbine locations, but the higher the ca-
acities become, the more challenging and cost-intensive will be the
eployment. An advantage is that it does not significantly increase the
omputational complexity in comparison to a linear approach due to its
onvex solutions space. 

For the design of local energy systems, it is common to approxi-
ate the technology investment with a cost share related to their exis-

ence ( intercept ) and cost share related to the scale ( slope ) [ 25 , 99 , 190 ,
91 ], resulting in an MILP. The choice of efficiency measures, e.g., in
he building envelope, constitutes binary variables [ 25 , 192 ]. While the
ntercept-Slope approach already respects economies of scale for a small
ange, it still has high estimation errors for larger ranges of the technol-
gy scale, such as CHP units. Those nonlinear cost functions require also
iecewise linear approximations [ 141 , 165 , 167 , 193 ], generating more
inary variables but providing a sufficient degree of accuracy. 

.5. Simplification of system dynamics and connectivity 

Another option to manipulate the complexity of the model is by ne-
lecting or reducing its dynamics or intrinsic connectivity between dif-
erent decision variables. 

One approach to decreasing the connectivity of the model compo-
ents is to separate the decisions for the technology choice, sizing and
peration, as is visualized in Fig. 12 . This can either be done fully sep-
rated in an iterative manner, such that in the top layer a genetic opti-
ization algorithm defines the design of the energy system, and a bot-

om layer wherein either a simulation [ 93 , 192 , 194 , 195 ] or separate
peration optimization [196-200] defines the operation. 

Another alternative is to simplify the operation model in the design
ayers, e.g., by fixing the impedance in transmission expansion models
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Fig. 11. Constituted mathematical program type depending on the chosen investment cost model. 

Fig. 12. Decision layers influencing the total energy system design. 
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Fig. 13. Classification of modeling approaches for capturing expansion and in- 
vestment dynamics across a long time horizon based on Lichtenböhmer et al. 
[205] and Lopion et al. [6] . 
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n the first stage [ 201 , 202 ] or by aggregating the time resolution of
he operational model to determine a design and then validating and
ne-tuning it with full temporal resolution [ 127 , 149 , 203 ]. 

Another possibility is to separate decisions within each of the layers.
or the case of capacity expansion, i.e., models applied for determining
he design of the energy system, the connectivity between consecutive
ransformation phases can be implemented using two fundamentally dif-
erent modeling approaches: A perfect-foresight and a myopic approach,
he latter also being known to be limited or restricted foresight [6] .
hese are illustrated in Fig. 13 , but can also be transferred to operation
odeling. 

Perfect-foresight is based on complete information about the past
nd future requirements for the energy system model. This means that
he past and future constraints of all expansion phases in the mathemat-
12 
cal model are known at any time step. Accordingly, perfect-foresight
pproaches are capable of finding a cost-minimal transformation path-
ay across all expansion phases [189] . In contrast, myopic approaches
ssume limited knowledge about the future, meaning that optimization
n each expansion phase is based on the results of the previous expan-
ion phases and the constraints of the current expansion phase only.
n that way, myopic models more appropriately capture shortsighted
ecision-making under real economic conditions [ 6 , 189 , 204 ]. 

Apart from the extreme cases of approaches, i.e., strictly perfect fore-
ight models and completely myopic models, a number of mixed ap-
roaches also exist for energy system design. One example is the rolling
orizon [ 188 , 206-208 ]. A rolling horizon splits the full observed in-
erval into several smaller intervals and matches the first value of an
nterval with the last value of the previous iteration. Thereby, the en-
ire time horizon is split into expansion phases, but in such a way that
he temporal subsets overlap. Thus, the overlapping time subsets are
inked to each other in a myopic manner, while the optimization within
ach subset is run with perfect foresight, which enables the model to
onsider limited foresight [205] while drastically reducing the compu-
ational burden compared to a perfect-foresight approach [206] . This
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Fig. 14. Sketch of the arrow head shape of the constraint matrix for an efficienct 
decomposition. 
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aises the question, however, of optimal interval lengths for the trade-
ff between complexity and accuracy. 

The same applies to operation modeling, where models are distin-
uished into models with decoupled time steps, rolling horizon models,
nd perfect foresight models. Models with decoupled time steps imple-
ent small operational characteristics of technical components, as many

f such characteristics would result in coupled time steps. These mod-
ls are commonly used to assess network loads [143] . Models applying
olling horizons can implement most of the operational characteristics of
echnical components mentioned above. The main difference to models
sing perfect foresight is the representation of long-term storage. While
pproaches that use a rolling horizon must pass storage values from one
eriod to the next (cf. [208] ), approaches rely on a perfect foresight
odel for long-term storage with a consistent variable. 

Nevertheless, the separation of the different model elements has re-
ently consisted of manual decomposition purposely performed by mod-
lers in order to reduce the complexity or natively due to a limited model
cope. Although these methods will converge on a solution for their un-
erlying ESOMs, it is not natively global and must be subsequently vali-
ated. In consequence, exact decomposition methods that also quantify
he error could be advantageous. 

. Solving and decomposition methods 

It is important to know what makes a problem difficult to solve,
espite the use of modern computing hardware. 

Until the 1990s, optimization problems were divided into linear and
on-linear types. This trend changed due to significant work by Rock-
feller [209] and optimization problems are therefore now viewed as
onvex or non-convex. Non-convex problems are significantly harder to
olve than convex ones; this is because any local optimal solution to a
onvex problem is guaranteed to also be a globally optimal solution.
hen sufficient computing resources are available, modelers can use

ecomposition methods to exploit parallel computing for both convex
nd non-convex optimization classes. 

.1. Solving and decomposition methods for convex optimization 

Typical convex optimization problems are linear or certain types of
uadratic problems; the standard algorithms for these two classes are
he simplex algorithm or interior point methods and the simple interior
oint methods, respectively. 

Linear programs can ordinarily be very efficiently solved by commer-
ial solvers. Nevertheless, for large scale problems it can become neces-
ary to breake the original problem into smaller parts that are coupled
ia a so-called coupling or the linking of variables and constraints. This
s called decomposition while the most common decomposition meth-
ds for convex optimization problems are Lagrangian relaxation [210] ,
enders decomposition [211] , and Alternating Direction Method of Mul-
ipliers (ADMM) [212] . When implemented in parallel [ 213 , 214 ] sig-
ificant reductions in the compute time can result [215] . 

Although the idea exist, to automatically decompose optimization
rograms, an efficient decomposition requires that the work be divided
nto, at best, equally-sized work packages. Finding an optimal decom-
osition is generally not possible in polynomial time [ 216 , 217 ], and
o in solving these problems one resorts to heuristics and approxima-
ions. An example is the Generic Column Generation [218] that au-
omatically detects those structures by comprising an arrowhead and
ordered detector via graph partitioning using hmetis [219] , as shown
n Fig. 14 . Other graph partitioning frameworks are those of Chaco

220] and Scotch [221] . This decomposed problem may then be fed into
 structure-exploiting algorithm such as Parallel Interior Point Solver
PIPS) [ 47 , 222 ]. However, generating this block structure automati-
ally takes for large problems significant compute time, wherefore a the
tructure identification is most often done by the modelers themselves. 
13 
One example is the temporal decomposition, where for each time
egment we obtain a smaller problem, as is shown in Section 3.5 . The
inking variables and constraints ensure that the states at the end of one
ime segment are the same as those at the beginning of the next. 

As a further example for the usage of decomposition methods within
nergy system optimization, Stursberg [223] applied the Benders de-
omposition to the convex formulated capacity expansion problem with
n improved approach for cut generation. 

.2. Solving and decomposition methods for non-convex optimization 

The presence of integer variables in an optimization problem is typ-
cally enough to make it non-convex. Non-convex problems can be ei-
her MIPs or MINLPs. MIPs are solved by iteratively solving multiple
Ps, while MINLPs are first converted into either multiple NLPs or MIPs
hat are then broken down further, for instance as proposed by Goder-
auer et al. [100] for the case of an energy system. More generally, we
teratively relax (by “branching ”) and enforce constraints (by “bound-
ng ”) on the original problem, the first algorithms of this type dating
ack to the 1960s [224-226] . Relaxations enlarge the feasible set of the
IP without excluding the feasible points of the original problem. In the

est case scenario, they provide a problem that is easier to solve and for
hich an optimal solution can be obtained faster than the true problem,
hich allows the user to derive a lower (upper) bound for a minimiza-

ion (maximization) objective. The efficiency of branching procedures
epends on two strategic decisions concerning (i) the selection of the
ranching variable; and (ii) the selection of the next node that must be
olved. Several studies attend to these decisions and evaluate them (e.g.,
227-229] ), while this theoretical work is well-reflected in commercial
olvers. 

Decomposition methods can be employed within branch and bound
lgorithms as well. The generalized Benders decomposition method pro-
osed by Benders [211] and extended by Geoffrion [230] with an outer
pproximation algorithm by Duran & Grossmann [231] has been an im-
ensely popular method to date for solving optimization problems. As

n additional step in the branch-and-bound algorithms, it is also possi-
le to generate so-called cutting planes and add them as new constraints
n order to cut off infeasible solutions [ 101 , 232 ]. 

In the context of energy system optimization, decomposition meth-
ds such as nested Benders decomposition are mainly used in stochastic
cenario analyses intended to account for the uncertainties in power
eneration unit commitment [233] , wind power investment decisions
234] , or sustainable energy hub designs [235] . Other use cases of de-
omposition methods are the solving of large-scaled, multi-period MILP
roblems in the context of electric power infrastructure planning and
ptimal power flow taking transmission constraints into account, see,
.g., [236-238] . More examples of the decomposition methods for en-
rgy optimization can be found in [239] . 
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. Conclusions 

Based on the review of complexity drivers in energy systems opti-
ization models (ESOM), we derive a qualitative guide to support mod-

lers in their modeling. 
Complexity goes beyond computational complexity: The entire pro-

ess of including the necessary input data, followed by defining, im-
lementing, and running the model and interpreting the results is com-
lex and must be communicated. The plain result “42 ″ is not sufficient.
herefore, consciously define the ESOM’s superstructure and start
ith a coarse, simple model to identify the necessary determinants to an-

wer your research question, and then increase the level of detail where
ecessary. In general, a model design based on data availability should
e avoided and instead choosen by the research goal. 

A high temporal-spatial resolution and temporal-spatial scope gains
mportance with a higher share of renewable energy sources and directly
mpacts the size of the ESOM and its calculation time. Therefore, a sys-

ematic reduction of the size of the model is recommended . Simple
own-sampling approaches on the temporal scale allow one to quickly
dentify the relevance of the chosen temporal resolution. If this is given,
uperior time series aggregation by clustering typical periods are gain-
ng popularity but can require significant adaptations to the model for-
ulation, e.g., for respecting the chronology of periods. Similar counts

or the spatial resolution: Aggregating based on neighboring administra-
ive regions can result in quick computational gains; nevertheless, the
mpact of the underlying copper plate assumptions inside each region
ust be evaluated. Holistic aggregation schemes simultaneously based

n grid structures, renewable potential, and demand are challenging to
mplement due to the heterogeneous data types but will be relevant in
uture to evaluate the spatial scope. 

Technical and economic relationships are natively non-linear or non-
ontinuous. Still, the majority of the reviewed ESOMs are linear and con-
inuous, resulting in convex optimization models that have polyno-
ial solving times. In consequence, binary variables should be avoided

nd equations linearized where possible. For instance, a technology with
 negligible cost contribution does not need a piecewise linear cost func-
ion. Mixed-integer linear models or non-convex non-linear programs
re np-hard, constituting an exponential solving time which strongly
imits their application for renewable energies in combination with stor-
ge and transmission technologies. 

In order to still achieve feasible system designs and operations, the
rrors must be quantified . This can either be done by a benchmark
odel or by more advanced error-bounding and multi-stage approaches

hat evaluate the error due to aggregation or model simplifications. As
onservative estimators, upper bounds can even guarantee feasibility of
he original problem. Nevertheless, the latter are challenging to imple-
ent and often specific to the simplification. 
14 
Advancements in computational resources have lately been achieved
hrough an increase of the number of cores while the calculation fre-
uency stagnates. In consequence, modern software must be paral-
elized, meaning that the optimization model must be decomposed. This
as until now not been automatically possible with any free or com-
ercial optimization solver at larger scales. In consequence, exact de-

omposition methods must be tailored to the model which is time
onsuming while the computational improvements are strongly related
o the connectivity of your model. Heuristic decompositions can do the
ob as well but are not necessarily globally optimal. 

Last, based on this guide and review, some major research gaps were
dentified: 

• A holistically-quantified cross-impact analysis of complexity reduc-
tion methods, including model simplifications, aggregation methods,
and heuristic decompositions for different energy models is open.
In particular, the impact of systematic avoidance binaries and non-
linearities in larger energy system models must be quantified. 

• To the authors’ knowledge, no methods that aggregate the entire
optimization model based on its abstract mathematical description
exist, although such methods could significantly accelerate the find-
ing of start solutions in optimization solvers or support the bounding
process. 

• Lastly, improvements in the solving algorithms are required in order
to more easily exploit modern parallel computing infrastructure. 
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Table 5 

Overview to some bottom-up energy systems optimization frameworks. For a more detailed overview of their capabilities, it is referred to Groissböck [31] , Lopion 
et al. [6] , and Ringkjøb et al. [32] . 

Name Type Applications Reference 

LEAP - Long-range Energy Alternatives 
Planning 

Annual time-step simulation for a mid- to long-term 

system planning horizon. 
Different scales: Cities, states, national (e.g., 
Philippines) and global applications. 

[15] 

EFOM - Energy Flow Optimization Model LP of a national or multinational technology network 
to supply the consumer demand. 

European Union with each country as single node. [16] 

BESOM - Brookhaven energy system 

optimization model 
Single time step dispatch and planning optimization of 
a technology network to supply electric and 
non-electric demands. 

National energy system of the United States. [12] 

MARKAL - MARKet and Allocation Optimization of dispatch and long term planning of 
energy systems with a set of representative time slices. 

Different scales: Community, state, national and 
global. 

[17] 

MESSAGE - Model for Energy Supply 
Strategy Alternatives and their General 
Environmental Impact 

Gams-based LP used for capacity expansion planning 
and scenario analyses 

A historically grown model used for different 
applications from capacity expansion to 
macroeconomic and climate impacts of energy supply 
and demand, 

[ 14 , 18 ] 

IKARUS - Instrumente für 
Kilmagas-Reduktionsstrategien 

LP optimization for planning and dispatch of a 
national supply system with myopic-foresight and an 
operation in typical days. 

National supply system of Germany. [6] 

PERSEUS - Programme-package for 
Emission Reduction Strategies in Energy 
Use and Supply-Certificate Trading 

GAMS based dispatch optimization. Germany and Europe. [19] 

TIMES - The Integrated MARKAL-EFOM 

System 

GAMS based LP modeling framework based on time 
slices for energy system design. 

International and national energy systems around the 
globe with adaptions to local systems. 

[20-23] 

DESOD - Distributed Energy System 

Optimal Design 
C# based MILP used for district planning. Capacity expansion planning of an energy system for a 

residential and commercial district comprising heat 
and electricity. 

[24] 

DER-CAM - Distributed Energy Resources 
Customer Adoption Model 

GAMS based MILP microgrid planning framework with 
a dispatch based on typical days. 

Different microgrid systems around the globe. [25] 

CALLIOPE (No acronym, c.f. [32] ) Python based LP modeling framework. Applied to Europe, Great Britain, Italy, South Africa, 
China, Kenya, Cambridge and Bangalore. 

[26] 

OEMOF - Open Energy Modeling 
Framework 

Python based MILP modeling framework for planning 
and dispatch of energy systems. 

Different regional energy systems from single sites to 
municipalities or states, especially located in Germany. 

[27] 

URBS (No acronym, c.f. [32] ) Python based LP framework for capacity expansion 
planning and unit commitment. 

Its usage has been adapted from neighbourhoods to 
continents. 

[28] 

PYPSA - Python for Power System 

Analysis 
Python based software for LP optimization and power 
flow simulation of large scale power system networks. 

Power grids across the globe while the its application 
to the European power grid is probably the most 
popular one. 

[29] 

FINE - Framework for Integrated Energy 
System Assessment 

Python based MILP energy systems modeling 
framework that can be applied to different spatial and 
temporal scales. 

Applied to European and German heat, gas and 
electricity networks as well as district systems. 

[30] 
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