000894713 001__ 894713
000894713 005__ 20240712113126.0
000894713 0247_ $$2doi$$a10.1002/chem.201801521
000894713 0247_ $$2ISSN$$a0947-6539
000894713 0247_ $$2ISSN$$a1521-3765
000894713 0247_ $$2altmetric$$aaltmetric:40601442
000894713 0247_ $$2pmid$$apmid:29626360
000894713 0247_ $$2WOS$$aWOS:000437268400006
000894713 037__ $$aFZJ-2021-03365
000894713 082__ $$a540
000894713 1001_ $$00000-0001-8164-3152$$aDörr, Tobias S.$$b0
000894713 245__ $$aAn Ambient Temperature Electrolyte with Superior Lithium Ion Conductivity based on a Self-Assembled Block Copolymer
000894713 260__ $$aWeinheim$$bWiley-VCH$$c2018
000894713 3367_ $$2DRIVER$$aarticle
000894713 3367_ $$2DataCite$$aOutput Types/Journal article
000894713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637840698_10843
000894713 3367_ $$2BibTeX$$aARTICLE
000894713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894713 3367_ $$00$$2EndNote$$aJournal Article
000894713 520__ $$aIn searching for polymer-based electrolytes with improved performance for lithium ion and lithium metal batteries, we studied block copolymer electrolytes with high amounts of bis(trifluoromethane)sulfonimide lithium obtained by macromolecular co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) and the salt from tetrahydrofuran. Particularly, an ultra-short poly(ethylene oxide) block of 2100 g mol−1 was applied, giving rise to 2D continuous lamellar microstructures. The macroscopic stability was ensured with major blocks from poly(isoprene) and poly(styrene), which separated the ionic conductive PEO/salt lamellae. Thermal annealing led to high ionic conductivities of 1.4 mS cm−1 at 20 °C with low activation energy and a superior lithium ion transference number of 0.7, accompanied by an improved mechanical stability (storage modulus of up to 107 Pa). With high Li:O ratios >1, we show a viable concept to achieve fast Li+ transport in block copolymers (BCP), decoupled from slow polymer relaxation.
000894713 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000894713 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894713 7001_ $$0P:(DE-Juel1)167584$$aPelz, Alexander$$b1
000894713 7001_ $$0P:(DE-HGF)0$$aZhang, Peng$$b2
000894713 7001_ $$00000-0003-2951-1704$$aKraus, Tobias$$b3
000894713 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
000894713 7001_ $$0P:(DE-Juel1)176785$$aWiemhöfer, Hans-Dieter$$b5$$eCorresponding author
000894713 773__ $$0PERI:(DE-600)1478547-X$$a10.1002/chem.201801521$$gVol. 24, no. 32, p. 8061 - 8065$$n32$$p8061 - 8065$$tChemistry - a European journal$$v24$$x0947-6539$$y2018
000894713 8564_ $$uhttps://juser.fz-juelich.de/record/894713/files/chem.201801521.pdf$$yRestricted
000894713 909CO $$ooai:juser.fz-juelich.de:894713$$pVDB
000894713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000894713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176785$$aForschungszentrum Jülich$$b5$$kFZJ
000894713 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000894713 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000894713 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000894713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-EUR J : 2019$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000894713 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000894713 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000894713 980__ $$ajournal
000894713 980__ $$aVDB
000894713 980__ $$aI:(DE-Juel1)IEK-12-20141217
000894713 980__ $$aUNRESTRICTED
000894713 981__ $$aI:(DE-Juel1)IMD-4-20141217