000894716 001__ 894716
000894716 005__ 20211025171513.0
000894716 0247_ $$2doi$$a10.1002/mabi.202100209
000894716 0247_ $$2ISSN$$a1616-5187
000894716 0247_ $$2ISSN$$a1616-5195
000894716 0247_ $$2Handle$$a2128/28788
000894716 0247_ $$2altmetric$$aaltmetric:111024454
000894716 0247_ $$2pmid$$a34342150
000894716 0247_ $$2WOS$$aWOS:000680490200001
000894716 037__ $$aFZJ-2021-03368
000894716 041__ $$aEnglish
000894716 082__ $$a570
000894716 1001_ $$0P:(DE-HGF)0$$aStengelin, Elena$$b0
000894716 245__ $$aRational Design of Thermoresponsive Microgel Templates with Polydopamine Surface Coating for Microtissue Applications
000894716 260__ $$aWeinheim$$bWiley-VCH$$c2021
000894716 3367_ $$2DRIVER$$aarticle
000894716 3367_ $$2DataCite$$aOutput Types/Journal article
000894716 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634192745_4064
000894716 3367_ $$2BibTeX$$aARTICLE
000894716 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894716 3367_ $$00$$2EndNote$$aJournal Article
000894716 520__ $$aFunctional microgels provide a versatile basis for synthetic in vitro platforms as alternatives to animal experiments. The tuning of the physical, chemical, and biological properties of synthetic microgels can be achieved by blending suitable polymers and formulating them such to reflect the heterogenous and complex nature of biological tissues. Based on this premise, this paper introduces the development of volume-switchable core–shell microgels as 3D templates to enable cell growth for microtissue applications, using a systematic approach to tune the microgel properties based on a deep conceptual and practical understanding. Microscopic microgel design, such as the tailoring of the microgel size and spherical shape, is achieved by droplet-based microfluidics, while on a nanoscopic scale, a thermoresponsive polymer basis, poly(N-isopropylacrylamide) (PNIPAAm), is used to provide the microgel volume switchability. Since PNIPAAm has only limited cell-growth promoting properties, the cell adhesion on the microgel is further improved by surface modification with polydopamine, which only slightly affects the microgel properties, thereby simplifying the system. To further tune the microgel thermoresponsiveness, different amounts of N-hydroxyethylacrylamide are incorporated into the PNIPAAm network. In a final step, cell growth on the microgel surface is investigated, both at a single microgel platform and in spheroidal cell structures.
000894716 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000894716 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894716 7001_ $$0P:(DE-HGF)0$$aNzigou Mombo, Brice$$b1
000894716 7001_ $$0P:(DE-HGF)0$$aMondeshki, Mihail$$b2
000894716 7001_ $$0P:(DE-Juel1)128800$$aBeltramo, Guillermo L.$$b3$$ufzj
000894716 7001_ $$0P:(DE-HGF)0$$aLange, Martin A.$$b4
000894716 7001_ $$0P:(DE-HGF)0$$aSchmidt, Patrick$$b5
000894716 7001_ $$0P:(DE-HGF)0$$aFrerichs, Hajo$$b6
000894716 7001_ $$0P:(DE-HGF)0$$aWegner, Serafine V.$$b7
000894716 7001_ $$0P:(DE-HGF)0$$aSeiffert, Sebastian$$b8$$eCorresponding author
000894716 773__ $$0PERI:(DE-600)2039130-4$$a10.1002/mabi.202100209$$gp. 2100209 -$$n9$$p2100209$$tMacromolecular bioscience$$v21$$x1616-5195$$y2021
000894716 8564_ $$uhttps://juser.fz-juelich.de/record/894716/files/Stengelin%20Seiffert%20--%20Microgel%20Templates%20for%20Cell%20Covering.pdf$$yOpenAccess
000894716 8564_ $$uhttps://juser.fz-juelich.de/record/894716/files/mabi.202100209.pdf$$yOpenAccess
000894716 909CO $$ooai:juser.fz-juelich.de:894716$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128800$$aForschungszentrum Jülich$$b3$$kFZJ
000894716 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000894716 9141_ $$y2021
000894716 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000894716 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894716 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOL BIOSCI : 2019$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000894716 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894716 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000894716 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000894716 920__ $$lyes
000894716 9201_ $$0I:(DE-Juel1)IBI-2-20200312$$kIBI-2$$lMechanobiologie$$x0
000894716 980__ $$ajournal
000894716 980__ $$aVDB
000894716 980__ $$aUNRESTRICTED
000894716 980__ $$aI:(DE-Juel1)IBI-2-20200312
000894716 9801_ $$aFullTexts