001     894716
005     20211025171513.0
024 7 _ |a 10.1002/mabi.202100209
|2 doi
024 7 _ |a 1616-5187
|2 ISSN
024 7 _ |a 1616-5195
|2 ISSN
024 7 _ |a 2128/28788
|2 Handle
024 7 _ |a altmetric:111024454
|2 altmetric
024 7 _ |a 34342150
|2 pmid
024 7 _ |a WOS:000680490200001
|2 WOS
037 _ _ |a FZJ-2021-03368
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Stengelin, Elena
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rational Design of Thermoresponsive Microgel Templates with Polydopamine Surface Coating for Microtissue Applications
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634192745_4064
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional microgels provide a versatile basis for synthetic in vitro platforms as alternatives to animal experiments. The tuning of the physical, chemical, and biological properties of synthetic microgels can be achieved by blending suitable polymers and formulating them such to reflect the heterogenous and complex nature of biological tissues. Based on this premise, this paper introduces the development of volume-switchable core–shell microgels as 3D templates to enable cell growth for microtissue applications, using a systematic approach to tune the microgel properties based on a deep conceptual and practical understanding. Microscopic microgel design, such as the tailoring of the microgel size and spherical shape, is achieved by droplet-based microfluidics, while on a nanoscopic scale, a thermoresponsive polymer basis, poly(N-isopropylacrylamide) (PNIPAAm), is used to provide the microgel volume switchability. Since PNIPAAm has only limited cell-growth promoting properties, the cell adhesion on the microgel is further improved by surface modification with polydopamine, which only slightly affects the microgel properties, thereby simplifying the system. To further tune the microgel thermoresponsiveness, different amounts of N-hydroxyethylacrylamide are incorporated into the PNIPAAm network. In a final step, cell growth on the microgel surface is investigated, both at a single microgel platform and in spheroidal cell structures.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Nzigou Mombo, Brice
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mondeshki, Mihail
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Beltramo, Guillermo L.
|0 P:(DE-Juel1)128800
|b 3
|u fzj
700 1 _ |a Lange, Martin A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schmidt, Patrick
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Frerichs, Hajo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wegner, Serafine V.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Seiffert, Sebastian
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1002/mabi.202100209
|g p. 2100209 -
|0 PERI:(DE-600)2039130-4
|n 9
|p 2100209
|t Macromolecular bioscience
|v 21
|y 2021
|x 1616-5195
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894716/files/Stengelin%20Seiffert%20--%20Microgel%20Templates%20for%20Cell%20Covering.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894716/files/mabi.202100209.pdf
909 C O |o oai:juser.fz-juelich.de:894716
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128800
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOL BIOSCI : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-2-20200312
|k IBI-2
|l Mechanobiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-2-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21