000894718 001__ 894718
000894718 005__ 20230815122844.0
000894718 0247_ $$2doi$$a10.1021/acsnano.0c06798
000894718 0247_ $$2ISSN$$a1936-0851
000894718 0247_ $$2ISSN$$a1936-086X
000894718 0247_ $$2Handle$$a2128/28612
000894718 0247_ $$2altmetric$$aaltmetric:94251605
000894718 0247_ $$2pmid$$a33186031
000894718 0247_ $$2WOS$$aWOS:000595533800118
000894718 037__ $$aFZJ-2021-03370
000894718 082__ $$a540
000894718 1001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b0$$eCorresponding author
000894718 245__ $$aKekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization
000894718 260__ $$aWashington, DC$$bSoc.$$c2020
000894718 3367_ $$2DRIVER$$aarticle
000894718 3367_ $$2DataCite$$aOutput Types/Journal article
000894718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670910955_2542
000894718 3367_ $$2BibTeX$$aARTICLE
000894718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894718 3367_ $$00$$2EndNote$$aJournal Article
000894718 520__ $$aWe revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.
000894718 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894718 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000894718 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894718 7001_ $$0P:(DE-HGF)0$$aReichmann, Alexander$$b1
000894718 7001_ $$0P:(DE-HGF)0$$aFan, Qitang$$b2
000894718 7001_ $$0P:(DE-HGF)0$$aEgger, Larissa$$b3
000894718 7001_ $$0P:(DE-HGF)0$$aKirschner, Hans$$b4
000894718 7001_ $$0P:(DE-HGF)0$$aNaumann, Tim$$b5
000894718 7001_ $$0P:(DE-HGF)0$$aWerner, Simon$$b6
000894718 7001_ $$0P:(DE-HGF)0$$aVollgraff, Tobias$$b7
000894718 7001_ $$0P:(DE-HGF)0$$aSundermeyer, Jörg$$b8
000894718 7001_ $$0P:(DE-HGF)0$$aEschmann, Lukas$$b9
000894718 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b10
000894718 7001_ $$0P:(DE-HGF)0$$aBrandstetter, Dominik$$b11
000894718 7001_ $$0P:(DE-Juel1)167128$$aPosseik, Francois$$b12$$ufzj
000894718 7001_ $$0P:(DE-HGF)0$$aKoller, Georg$$b13
000894718 7001_ $$0P:(DE-HGF)0$$aGottwald, Alexander$$b14
000894718 7001_ $$0P:(DE-HGF)0$$aRichter, Mathias$$b15
000894718 7001_ $$0P:(DE-HGF)0$$aRamsey, Michael G.$$b16
000894718 7001_ $$0P:(DE-HGF)0$$aRohlfing, Michael$$b17
000894718 7001_ $$00000-0002-8057-7795$$aPuschnig, Peter$$b18
000894718 7001_ $$00000-0001-5579-2568$$aGottfried, J. Michael$$b19
000894718 7001_ $$0P:(DE-Juel1)128790$$aSoubatch, Serguei$$b20
000894718 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b21
000894718 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.0c06798$$gVol. 14, no. 11, p. 15766 - 15775$$n11$$p15766 - 15775$$tACS nano$$v14$$x1936-086X$$y2020
000894718 8564_ $$uhttps://juser.fz-juelich.de/record/894718/files/acsnano.0c06798.pdf$$yOpenAccess
000894718 909CO $$ooai:juser.fz-juelich.de:894718$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b0$$kFZJ
000894718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b10$$kFZJ
000894718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b12$$kFZJ
000894718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich$$b20$$kFZJ
000894718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b21$$kFZJ
000894718 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894718 9141_ $$y2021
000894718 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000894718 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894718 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2019$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894718 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2019$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894718 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894718 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894718 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000894718 980__ $$ajournal
000894718 980__ $$aVDB
000894718 980__ $$aI:(DE-Juel1)PGI-3-20110106
000894718 980__ $$aI:(DE-Juel1)NIC-20090406
000894718 980__ $$aUNRESTRICTED
000894718 9801_ $$aFullTexts