001     894718
005     20230815122844.0
024 7 _ |a 10.1021/acsnano.0c06798
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/28612
|2 Handle
024 7 _ |a altmetric:94251605
|2 altmetric
024 7 _ |a 33186031
|2 pmid
024 7 _ |a WOS:000595533800118
|2 WOS
037 _ _ |a FZJ-2021-03370
082 _ _ |a 540
100 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 0
|e Corresponding author
245 _ _ |a Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670910955_2542
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|x 0
|f POF IV
536 _ _ |a DFG project 396769409 - Grundlagen der Photoemissionstomographie
|0 G:(GEPRIS)396769409
|c 396769409
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Reichmann, Alexander
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fan, Qitang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Egger, Larissa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kirschner, Hans
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Naumann, Tim
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Werner, Simon
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vollgraff, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sundermeyer, Jörg
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Eschmann, Lukas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 10
700 1 _ |a Brandstetter, Dominik
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Posseik, Francois
|0 P:(DE-Juel1)167128
|b 12
|u fzj
700 1 _ |a Koller, Georg
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gottwald, Alexander
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Richter, Mathias
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ramsey, Michael G.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rohlfing, Michael
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 18
700 1 _ |a Gottfried, J. Michael
|0 0000-0001-5579-2568
|b 19
700 1 _ |a Soubatch, Serguei
|0 P:(DE-Juel1)128790
|b 20
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 21
773 _ _ |a 10.1021/acsnano.0c06798
|g Vol. 14, no. 11, p. 15766 - 15775
|0 PERI:(DE-600)2383064-5
|n 11
|p 15766 - 15775
|t ACS nano
|v 14
|y 2020
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/894718/files/acsnano.0c06798.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894718
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174294
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)165181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)167128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)128790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21