000894719 001__ 894719
000894719 005__ 20220131120401.0
000894719 0247_ $$2doi$$a10.3762/bjnano.11.132
000894719 0247_ $$2Handle$$a2128/28591
000894719 0247_ $$2pmid$$a33083197
000894719 0247_ $$2WOS$$aWOS:000575579000001
000894719 037__ $$aFZJ-2021-03371
000894719 082__ $$a620
000894719 1001_ $$0P:(DE-HGF)0$$aHurdax, Philipp$$b0$$eCorresponding author
000894719 245__ $$aControlling the electronic and physical coupling on dielectric thin films
000894719 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2020
000894719 3367_ $$2DRIVER$$aarticle
000894719 3367_ $$2DataCite$$aOutput Types/Journal article
000894719 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630570948_18928
000894719 3367_ $$2BibTeX$$aARTICLE
000894719 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894719 3367_ $$00$$2EndNote$$aJournal Article
000894719 520__ $$aUltrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.
000894719 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894719 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894719 7001_ $$0P:(DE-HGF)0$$aHollerer, Michael$$b1
000894719 7001_ $$0P:(DE-HGF)0$$aEgger, Larissa$$b2
000894719 7001_ $$00000-0001-7741-2394$$aKoller, Georg$$b3
000894719 7001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b4
000894719 7001_ $$0P:(DE-Juel1)174294$$aHaags, Anja$$b5
000894719 7001_ $$0P:(DE-Juel1)128790$$aSoubatch, Serguei$$b6
000894719 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b7$$ufzj
000894719 7001_ $$0P:(DE-HGF)0$$aRichter, Mathias$$b8
000894719 7001_ $$00000-0003-2810-7419$$aGottwald, Alexander$$b9
000894719 7001_ $$00000-0002-8057-7795$$aPuschnig, Peter$$b10
000894719 7001_ $$00000-0001-9089-9061$$aSterrer, Martin$$b11
000894719 7001_ $$00000-0003-0523-1994$$aRamsey, Michael G$$b12
000894719 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.11.132$$gVol. 11, p. 1492 - 1503$$p1492 - 1503$$tBeilstein journal of nanotechnology$$v11$$x2190-4286$$y2020
000894719 8564_ $$uhttps://juser.fz-juelich.de/record/894719/files/2190-4286-11-132.pdf$$yOpenAccess
000894719 909CO $$ooai:juser.fz-juelich.de:894719$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b4$$kFZJ
000894719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174294$$aForschungszentrum Jülich$$b5$$kFZJ
000894719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich$$b6$$kFZJ
000894719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b7$$kFZJ
000894719 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894719 9141_ $$y2021
000894719 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000894719 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894719 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2019$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894719 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000894719 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000894719 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894719 9801_ $$aFullTexts
000894719 980__ $$ajournal
000894719 980__ $$aVDB
000894719 980__ $$aUNRESTRICTED
000894719 980__ $$aI:(DE-Juel1)PGI-3-20110106