Hauptseite > Publikationsdatenbank > Controlling the electronic and physical coupling on dielectric thin films > print |
001 | 894719 | ||
005 | 20220131120401.0 | ||
024 | 7 | _ | |a 10.3762/bjnano.11.132 |2 doi |
024 | 7 | _ | |a 2128/28591 |2 Handle |
024 | 7 | _ | |a 33083197 |2 pmid |
024 | 7 | _ | |a WOS:000575579000001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03371 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Hurdax, Philipp |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Controlling the electronic and physical coupling on dielectric thin films |
260 | _ | _ | |a Frankfurt, M. |c 2020 |b Beilstein-Institut zur Förderung der Chemischen Wissenschaften |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1630570948_18928 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films. |
536 | _ | _ | |a 5213 - Quantum Nanoscience (POF4-521) |0 G:(DE-HGF)POF4-5213 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hollerer, Michael |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Egger, Larissa |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Koller, Georg |0 0000-0001-7741-2394 |b 3 |
700 | 1 | _ | |a Yang, Xiaosheng |0 P:(DE-Juel1)165181 |b 4 |
700 | 1 | _ | |a Haags, Anja |0 P:(DE-Juel1)174294 |b 5 |
700 | 1 | _ | |a Soubatch, Serguei |0 P:(DE-Juel1)128790 |b 6 |
700 | 1 | _ | |a Tautz, Frank Stefan |0 P:(DE-Juel1)128791 |b 7 |u fzj |
700 | 1 | _ | |a Richter, Mathias |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Gottwald, Alexander |0 0000-0003-2810-7419 |b 9 |
700 | 1 | _ | |a Puschnig, Peter |0 0000-0002-8057-7795 |b 10 |
700 | 1 | _ | |a Sterrer, Martin |0 0000-0001-9089-9061 |b 11 |
700 | 1 | _ | |a Ramsey, Michael G |0 0000-0003-0523-1994 |b 12 |
773 | _ | _ | |a 10.3762/bjnano.11.132 |g Vol. 11, p. 1492 - 1503 |0 PERI:(DE-600)2583584-1 |p 1492 - 1503 |t Beilstein journal of nanotechnology |v 11 |y 2020 |x 2190-4286 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894719/files/2190-4286-11-132.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894719 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165181 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)174294 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128790 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128791 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5213 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BEILSTEIN J NANOTECH : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Quantum Nanoscience |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|