001     894719
005     20220131120401.0
024 7 _ |a 10.3762/bjnano.11.132
|2 doi
024 7 _ |a 2128/28591
|2 Handle
024 7 _ |a 33083197
|2 pmid
024 7 _ |a WOS:000575579000001
|2 WOS
037 _ _ |a FZJ-2021-03371
082 _ _ |a 620
100 1 _ |a Hurdax, Philipp
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Controlling the electronic and physical coupling on dielectric thin films
260 _ _ |a Frankfurt, M.
|c 2020
|b Beilstein-Institut zur Förderung der Chemischen Wissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630570948_18928
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hollerer, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Egger, Larissa
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Koller, Georg
|0 0000-0001-7741-2394
|b 3
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 4
700 1 _ |a Haags, Anja
|0 P:(DE-Juel1)174294
|b 5
700 1 _ |a Soubatch, Serguei
|0 P:(DE-Juel1)128790
|b 6
700 1 _ |a Tautz, Frank Stefan
|0 P:(DE-Juel1)128791
|b 7
|u fzj
700 1 _ |a Richter, Mathias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gottwald, Alexander
|0 0000-0003-2810-7419
|b 9
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 10
700 1 _ |a Sterrer, Martin
|0 0000-0001-9089-9061
|b 11
700 1 _ |a Ramsey, Michael G
|0 0000-0003-0523-1994
|b 12
773 _ _ |a 10.3762/bjnano.11.132
|g Vol. 11, p. 1492 - 1503
|0 PERI:(DE-600)2583584-1
|p 1492 - 1503
|t Beilstein journal of nanotechnology
|v 11
|y 2020
|x 2190-4286
856 4 _ |u https://juser.fz-juelich.de/record/894719/files/2190-4286-11-132.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894719
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)174294
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BEILSTEIN J NANOTECH : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21