000894720 001__ 894720
000894720 005__ 20230217124529.0
000894720 0247_ $$2doi$$a10.1103/PhysRevB.102.075447
000894720 0247_ $$2ISSN$$a1098-0121
000894720 0247_ $$2ISSN$$a2469-9977
000894720 0247_ $$2ISSN$$a0163-1829
000894720 0247_ $$2ISSN$$a0556-2805
000894720 0247_ $$2ISSN$$a1095-3795
000894720 0247_ $$2ISSN$$a1538-4489
000894720 0247_ $$2ISSN$$a1550-235X
000894720 0247_ $$2ISSN$$a2469-9950
000894720 0247_ $$2ISSN$$a2469-9969
000894720 0247_ $$2Handle$$a2128/28595
000894720 0247_ $$2altmetric$$aaltmetric:89507164
000894720 0247_ $$2WOS$$aWOS:000563710400006
000894720 037__ $$aFZJ-2021-03372
000894720 082__ $$a530
000894720 1001_ $$0P:(DE-HGF)0$$aKnippertz, Johannes$$b0$$eCorresponding author
000894720 245__ $$aVertical bonding distances and interfacial band structure of PTCDA on a Sn-Ag surface alloy
000894720 260__ $$aWoodbury, NY$$bInst.$$c2020
000894720 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-08-28
000894720 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-08-01
000894720 3367_ $$2DRIVER$$aarticle
000894720 3367_ $$2DataCite$$aOutput Types/Journal article
000894720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630996684_442
000894720 3367_ $$2BibTeX$$aARTICLE
000894720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894720 3367_ $$00$$2EndNote$$aJournal Article
000894720 520__ $$aMolecular materials enable a vast variety of functionalities for novel electronic and spintronic devices. The unique possibility to alter organic molecules or metallic substrates offers the opportunity to optimize interfacial properties for almost any desired field of application. For this reason, we extend the successful approach to control metal-organic interfaces by surface alloying. We present a comprehensive characterization of the structural and electronic properties of the interface formed between the prototypical molecule PTCDA and a Sn-Ag surface alloy grown on an Ag(111) single crystal surface. We monitor the changes of adsorption height of the surface alloy atoms and electronic valence band structure upon adsorption of one layer of PTCDA using the normal incidence x-ray standing wave technique in combination with momentum-resolved photoelectron spectroscopy. We find that the vertical buckling and the surface band structure of the SnAg2 surface alloy is not altered by the adsorption of one layer of PTCDA, in contrast to our recent study of PTCDA on a PbAg2 surface alloy [B. Stadtmüller et al., Phys. Rev. Lett. 117, 096805 (2016)]. In addition, the vertical adsorption geometry of PTCDA and the interfacial energy level alignment indicate the absence of any chemical interaction between the molecule and the surface alloy. We attribute the different interactions at these PTCDA/surface alloy interfaces to the presence or absence of local σ-bonds between the PTCDA oxygen atoms and the surface atoms. Combining our findings with results from literature, we are able to propose an empiric rule for engineering the surface band structure of alloys by adsorption of organic molecules.
000894720 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894720 542__ $$2Crossref$$i2020-08-28$$uhttps://link.aps.org/licenses/aps-default-license
000894720 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894720 7001_ $$0P:(DE-HGF)0$$aKelly, Leah L.$$b1
000894720 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b2
000894720 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b3
000894720 7001_ $$0P:(DE-HGF)0$$aCinchetti, Mirko$$b4
000894720 7001_ $$0P:(DE-HGF)0$$aAeschlimann, Martin$$b5
000894720 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b6
000894720 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.102.075447$$bAmerican Physical Society (APS)$$d2020-08-28$$n7$$p075447$$tPhysical Review B$$v102$$x2469-9950$$y2020
000894720 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.075447$$gVol. 102, no. 7, p. 075447$$n7$$p075447$$tPhysical review / B$$v102$$x2469-9950$$y2020
000894720 8564_ $$uhttps://juser.fz-juelich.de/record/894720/files/PhysRevB.102.075447.pdf$$yOpenAccess
000894720 909CO $$ooai:juser.fz-juelich.de:894720$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b3$$kFZJ
000894720 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894720 9141_ $$y2021
000894720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000894720 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000894720 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894720 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000894720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000894720 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894720 9801_ $$aFullTexts
000894720 980__ $$ajournal
000894720 980__ $$aVDB
000894720 980__ $$aUNRESTRICTED
000894720 980__ $$aI:(DE-Juel1)PGI-3-20110106
000894720 999C5 $$1F. Gutmann$$2Crossref$$oF. Gutmann Organic Semiconductors 1967$$tOrganic Semiconductors$$y1967
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.solmat.2004.02.021
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/(SICI)1521-4095(199906)11:8%3C605::AID-ADMA605%3E3.0.CO;2-Q
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaf0590
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C3CS60449G
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.progsurf.2007.09.001
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0040-6090(01)01094-X
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/15/12/123028
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14621
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.surfrep.2004.09.002
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.146801
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.081301
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.orgel.2007.10.004
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/8/083038
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2005.12.050
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/18/184008
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/16.605471
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201102297
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201400125
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4902
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms4685
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.235432
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ar0001012
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201503570
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.217602
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.orgel.2010.07.027
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.9b01123
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/ab825f
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.0c03133
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.245430
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/87/37003
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.245429
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.186807
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.075424
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.6b01197
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.096805
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2004.10.004
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2918133
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-648X/aafcf5
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/08940886.2018.1483653
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0079-6816(98)00012-4
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/68/4/R01
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0167-5729(93)90025-K
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2005.05.024
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(01)00993-1
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2005.05.025
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.elspec.2017.07.007
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.075441
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(97)00888-1
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.235436
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1807812
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125432
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.045421
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2018.06.009
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c3dt50599e
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.235431
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/11/5/053010
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/100/26008
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/4/045002
000894720 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/38/385501