000894722 001__ 894722
000894722 005__ 20230815122837.0
000894722 0247_ $$2doi$$a10.1021/acs.jpcc.9b08824
000894722 0247_ $$2ISSN$$a1932-7447
000894722 0247_ $$2ISSN$$a1932-7455
000894722 0247_ $$2Handle$$a2128/28598
000894722 0247_ $$2altmetric$$aaltmetric:70002747
000894722 0247_ $$2WOS$$aWOS:000501623100016
000894722 037__ $$aFZJ-2021-03374
000894722 082__ $$a530
000894722 1001_ $$0P:(DE-HGF)0$$aKlein, Benedikt P.$$b0
000894722 245__ $$aMolecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)
000894722 260__ $$aWashington, DC$$bSoc.$$c2019
000894722 3367_ $$2DRIVER$$aarticle
000894722 3367_ $$2DataCite$$aOutput Types/Journal article
000894722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670910883_17645
000894722 3367_ $$2BibTeX$$aARTICLE
000894722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894722 3367_ $$00$$2EndNote$$aJournal Article
000894722 520__ $$aInterfaces between polycyclic π-electron systems and metals play prominent roles in organic or graphene-based (opto)electronic devices, in which performance-related parameters depend critically on the properties of metal/semiconductor contacts. Here, we explore how the topology of the π-electron system influences the bonding and the electronic properties of the interface. We use azulene as a model for nonalternant pentagon–heptagon (5–7) ring pairs and compare it to its isomer naphthalene, which represents the alternant 6–6 ring pair. Their coverage-dependent interaction with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopies (UPS and XPS), and density functional theory (DFT). Coverage-dependent adsorption heights and spectroscopic data reveal that azulene forms shorter interfacial bonds than naphthalene and engages in stronger electronic interactions with both surfaces. These differences are more pronounced on Cu. Increasing coverages lead to larger adsorption heights, indicating bond weakening by intermolecular repulsion. The extensive DFT calculations include dispersive interactions using (1) the DFT-D3 scheme, (2) the vdWsurf correction based on DFT-TS, (3) a many-body dispersion (MBD) correction scheme, and (4) the D3surf scheme. All methods predict the adsorption heights reasonably well with an average error below 0.1 Å. The stronger bond of azulene is attributed to its nonalternant topology, which results in a reduced highest occupied molecular orbital (HOMO)–lowest occupied molecular orbital (LUMO) gap and brings the LUMO energetically close to the Fermi energy of the metal, causing stronger hybridization with electronic states of the metal surfaces.
000894722 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894722 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000894722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894722 7001_ $$0P:(DE-HGF)0$$aMorbec, Juliana M.$$b1
000894722 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b2
000894722 7001_ $$0P:(DE-HGF)0$$aGreulich, Katharina K.$$b3
000894722 7001_ $$0P:(DE-HGF)0$$aSachs, Malte$$b4
000894722 7001_ $$0P:(DE-HGF)0$$aParhizkar, Shayan$$b5
000894722 7001_ $$0P:(DE-Juel1)167128$$aPosseik, Francois$$b6$$ufzj
000894722 7001_ $$0P:(DE-HGF)0$$aSchmid, Martin$$b7
000894722 7001_ $$0P:(DE-HGF)0$$aHall, Samuel J.$$b8
000894722 7001_ $$0P:(DE-HGF)0$$aMaurer, Reinhard J.$$b9
000894722 7001_ $$0P:(DE-HGF)0$$aMeyer, Bernd$$b10
000894722 7001_ $$00000-0002-6759-8559$$aTonner, Ralf$$b11
000894722 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b12
000894722 7001_ $$0P:(DE-HGF)0$$aKratzer, Peter$$b13
000894722 7001_ $$0P:(DE-HGF)0$$aGottfried, J. Michael$$b14$$eCorresponding author
000894722 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.9b08824$$gVol. 123, no. 48, p. 29219 - 29230$$n48$$p29219 - 29230$$tThe journal of physical chemistry <Washington, DC> / C$$v123$$x1932-7455$$y2019
000894722 8564_ $$uhttps://juser.fz-juelich.de/record/894722/files/acs.jpcc.9b08824-1.pdf$$yRestricted
000894722 8564_ $$uhttps://juser.fz-juelich.de/record/894722/files/acs.jpcc.9b08824.pdf$$yPublished on 2019-11-06. Available in OpenAccess from 2020-11-06.
000894722 909CO $$ooai:juser.fz-juelich.de:894722$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b6$$kFZJ
000894722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b12$$kFZJ
000894722 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894722 9141_ $$y2021
000894722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000894722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2019$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894722 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894722 980__ $$ajournal
000894722 980__ $$aVDB
000894722 980__ $$aI:(DE-Juel1)PGI-3-20110106
000894722 980__ $$aUNRESTRICTED
000894722 9801_ $$aFullTexts