001     894722
005     20230815122837.0
024 7 _ |a 10.1021/acs.jpcc.9b08824
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/28598
|2 Handle
024 7 _ |a altmetric:70002747
|2 altmetric
024 7 _ |a WOS:000501623100016
|2 WOS
037 _ _ |a FZJ-2021-03374
082 _ _ |a 530
100 1 _ |a Klein, Benedikt P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecule–Metal Bond of Alternant versus Nonalternant Aromatic Systems on Coinage Metal Surfaces: Naphthalene versus Azulene on Ag(111) and Cu(111)
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670910883_17645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interfaces between polycyclic π-electron systems and metals play prominent roles in organic or graphene-based (opto)electronic devices, in which performance-related parameters depend critically on the properties of metal/semiconductor contacts. Here, we explore how the topology of the π-electron system influences the bonding and the electronic properties of the interface. We use azulene as a model for nonalternant pentagon–heptagon (5–7) ring pairs and compare it to its isomer naphthalene, which represents the alternant 6–6 ring pair. Their coverage-dependent interaction with Ag(111) and Cu(111) surfaces was studied with the normal-incidence X-ray standing wave (NIXSW) technique, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, UV and X-ray photoelectron spectroscopies (UPS and XPS), and density functional theory (DFT). Coverage-dependent adsorption heights and spectroscopic data reveal that azulene forms shorter interfacial bonds than naphthalene and engages in stronger electronic interactions with both surfaces. These differences are more pronounced on Cu. Increasing coverages lead to larger adsorption heights, indicating bond weakening by intermolecular repulsion. The extensive DFT calculations include dispersive interactions using (1) the DFT-D3 scheme, (2) the vdWsurf correction based on DFT-TS, (3) a many-body dispersion (MBD) correction scheme, and (4) the D3surf scheme. All methods predict the adsorption heights reasonably well with an average error below 0.1 Å. The stronger bond of azulene is attributed to its nonalternant topology, which results in a reduced highest occupied molecular orbital (HOMO)–lowest occupied molecular orbital (LUMO) gap and brings the LUMO energetically close to the Fermi energy of the metal, causing stronger hybridization with electronic states of the metal surfaces.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|x 0
|f POF IV
536 _ _ |a DFG project 396769409 - Grundlagen der Photoemissionstomographie
|0 G:(GEPRIS)396769409
|c 396769409
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Morbec, Juliana M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Franke, Markus
|0 P:(DE-Juel1)161374
|b 2
700 1 _ |a Greulich, Katharina K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sachs, Malte
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Parhizkar, Shayan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Posseik, Francois
|0 P:(DE-Juel1)167128
|b 6
|u fzj
700 1 _ |a Schmid, Martin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hall, Samuel J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Maurer, Reinhard J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Meyer, Bernd
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Tonner, Ralf
|0 0000-0002-6759-8559
|b 11
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 12
700 1 _ |a Kratzer, Peter
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gottfried, J. Michael
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcc.9b08824
|g Vol. 123, no. 48, p. 29219 - 29230
|0 PERI:(DE-600)2256522-X
|n 48
|p 29219 - 29230
|t The journal of physical chemistry / C
|v 123
|y 2019
|x 1932-7455
856 4 _ |u https://juser.fz-juelich.de/record/894722/files/acs.jpcc.9b08824-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/894722/files/acs.jpcc.9b08824.pdf
|y Published on 2019-11-06. Available in OpenAccess from 2020-11-06.
909 C O |o oai:juser.fz-juelich.de:894722
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21