000894768 001__ 894768
000894768 005__ 20230815122843.0
000894768 0247_ $$2doi$$a10.1021/acs.jpclett.1c01261
000894768 0247_ $$2Handle$$a2128/28623
000894768 0247_ $$2altmetric$$aaltmetric:112990246
000894768 0247_ $$2pmid$$apmid:34472339
000894768 0247_ $$2WOS$$aWOS:000696175700025
000894768 037__ $$aFZJ-2021-03382
000894768 082__ $$a530
000894768 1001_ $$0P:(DE-HGF)0$$aBoukhvalov, Danil W.$$b0
000894768 245__ $$aUnveiling the Mechanisms Ruling the Efficient Hydrogen Evolution Reaction with Mitrofanovite Pt 3 Te 4
000894768 260__ $$aWashington, DC$$bACS$$c2021
000894768 3367_ $$2DRIVER$$aarticle
000894768 3367_ $$2DataCite$$aOutput Types/Journal article
000894768 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631519461_13222
000894768 3367_ $$2BibTeX$$aARTICLE
000894768 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894768 3367_ $$00$$2EndNote$$aJournal Article
000894768 520__ $$aBy means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm–2 and a Tafel slope of 36–49 mV dec–1 associated with the Volmer–Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.
000894768 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894768 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000894768 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894768 7001_ $$0P:(DE-HGF)0$$aCheng, Jia$$b1
000894768 7001_ $$0P:(DE-HGF)0$$aD’Olimpio, Gianluca$$b2
000894768 7001_ $$0P:(DE-Juel1)167128$$aBocquet, François C.$$b3
000894768 7001_ $$0P:(DE-HGF)0$$aKuo, Chia-Nung$$b4
000894768 7001_ $$0P:(DE-HGF)0$$aSarkar, Anan Bari$$b5
000894768 7001_ $$0P:(DE-HGF)0$$aGhosh, Barun$$b6
000894768 7001_ $$0P:(DE-HGF)0$$aVobornik, Ivana$$b7
000894768 7001_ $$0P:(DE-HGF)0$$aFujii, Jun$$b8
000894768 7001_ $$0P:(DE-HGF)0$$aHsu, Kuan$$b9
000894768 7001_ $$aWang, Li-Min$$b10
000894768 7001_ $$0P:(DE-HGF)0$$aAzulay, Ori$$b11
000894768 7001_ $$0P:(DE-HGF)0$$aDaptary, Gopi Nath$$b12
000894768 7001_ $$00000-0003-1091-5661$$aNaveh, Doron$$b13
000894768 7001_ $$0P:(DE-HGF)0$$aLue, Chin Shan$$b14
000894768 7001_ $$00000-0001-8382-7027$$aVorokhta, Mykhailo$$b15
000894768 7001_ $$0P:(DE-HGF)0$$aAgarwal, Amit$$b16
000894768 7001_ $$00000-0003-3430-4988$$aZhang, Lixue$$b17$$eCorresponding author
000894768 7001_ $$00000-0002-4254-2102$$aPolitano, Antonio$$b18$$eCorresponding author
000894768 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.1c01261$$gp. 8627 - 8636$$n35$$p8627 - 8636$$tThe journal of physical chemistry letters$$v12$$x1948-7185$$y2021
000894768 8564_ $$uhttps://juser.fz-juelich.de/record/894768/files/acs.jpclett.1c01261.pdf$$yOpenAccess
000894768 909CO $$ooai:juser.fz-juelich.de:894768$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894768 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b3$$kFZJ
000894768 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894768 9141_ $$y2021
000894768 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000894768 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894768 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894768 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000894768 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000894768 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894768 980__ $$ajournal
000894768 980__ $$aVDB
000894768 980__ $$aUNRESTRICTED
000894768 980__ $$aI:(DE-Juel1)PGI-3-20110106
000894768 9801_ $$aFullTexts