001     894768
005     20230815122843.0
024 7 _ |a 10.1021/acs.jpclett.1c01261
|2 doi
024 7 _ |a 2128/28623
|2 Handle
024 7 _ |a altmetric:112990246
|2 altmetric
024 7 _ |a pmid:34472339
|2 pmid
024 7 _ |a WOS:000696175700025
|2 WOS
037 _ _ |a FZJ-2021-03382
082 _ _ |a 530
100 1 _ |a Boukhvalov, Danil W.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unveiling the Mechanisms Ruling the Efficient Hydrogen Evolution Reaction with Mitrofanovite Pt 3 Te 4
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1631519461_13222
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm–2 and a Tafel slope of 36–49 mV dec–1 associated with the Volmer–Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|x 0
|f POF IV
536 _ _ |a DFG project 396769409 - Grundlagen der Photoemissionstomographie
|0 G:(GEPRIS)396769409
|c 396769409
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cheng, Jia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a D’Olimpio, Gianluca
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bocquet, François C.
|0 P:(DE-Juel1)167128
|b 3
700 1 _ |a Kuo, Chia-Nung
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sarkar, Anan Bari
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ghosh, Barun
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vobornik, Ivana
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fujii, Jun
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hsu, Kuan
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wang, Li-Min
|b 10
700 1 _ |a Azulay, Ori
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Daptary, Gopi Nath
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Naveh, Doron
|0 0000-0003-1091-5661
|b 13
700 1 _ |a Lue, Chin Shan
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Vorokhta, Mykhailo
|0 0000-0001-8382-7027
|b 15
700 1 _ |a Agarwal, Amit
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zhang, Lixue
|0 0000-0003-3430-4988
|b 17
|e Corresponding author
700 1 _ |a Politano, Antonio
|0 0000-0002-4254-2102
|b 18
|e Corresponding author
773 _ _ |a 10.1021/acs.jpclett.1c01261
|g p. 8627 - 8636
|0 PERI:(DE-600)2522838-9
|n 35
|p 8627 - 8636
|t The journal of physical chemistry letters
|v 12
|y 2021
|x 1948-7185
856 4 _ |u https://juser.fz-juelich.de/record/894768/files/acs.jpclett.1c01261.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894768
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167128
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM LETT : 2019
|d 2021-01-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS CHEM LETT : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21