000894808 001__ 894808
000894808 005__ 20230123110537.0
000894808 0247_ $$2doi$$a10.1016/j.combustflame.2021.111701
000894808 0247_ $$2ISSN$$a0010-2180
000894808 0247_ $$2ISSN$$a1556-2921
000894808 0247_ $$2Handle$$a2128/29454
000894808 0247_ $$2WOS$$aWOS:000735903800003
000894808 037__ $$aFZJ-2021-03403
000894808 082__ $$a620
000894808 1001_ $$0P:(DE-Juel1)188669$$aHerff, Sohel Sebastian$$b0$$eCorresponding author$$ufzj
000894808 245__ $$aImpact of non-symmetric confinement on the flame dynamics of a lean-premixed swirl flame
000894808 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000894808 3367_ $$2DRIVER$$aarticle
000894808 3367_ $$2DataCite$$aOutput Types/Journal article
000894808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639467233_4487
000894808 3367_ $$2BibTeX$$aARTICLE
000894808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894808 3367_ $$00$$2EndNote$$aJournal Article
000894808 520__ $$aThe impact of confinement on a turbulent lean premixed swirl flame is investigated using a finite-volume large-eddy simulation method to solve the compressible Navier-Stokes equations and a combined G-equation progress variable approach to model the flame. The geometry is an experimentally investigated burner by Moeck et al. [Combust. Flame, 159, 2650-2668 (2012)] in which a precessing vortex core (PVC) and a self-excited thermoacoustic instability occur. To analyze the effect of confinement on the M-shaped flame, three configurations are investigated, i.e., an unconfined configuration, a symmetric confined configuration, and a non-symmetric confined configuration. The symmetric confined configuration corresponds to the experimental burner and the numerical results are in good agreement with the measurements. The flow fields of the confined and unconfined configurations differ significantly due to a more pronounced PVC downstream of the injection tube in the confined configurations. The numerical results confirm experimental findings from the literature, i.e., the confinement defines the recirculation zones and the turbulence intensity of the swirling jets. Furthermore, the present results show that the limit-cycle amplitude of the thermoacoustic instability, which occurs in the confined configurations due to a resonant coupling of the flame with the acoustic quarter-wave mode of the combustion chamber, is significantly reduced in the non-symmetric confined configuration. The mode determined by a dynamic mode analysis (DMD) that describes the impact of the acoustic quarter-wave mode on the velocity field only occurs in the symmetric confined configuration. Consequently, a lower coupling of the acoustic oscillations due to the thermoacoustic instability with the flame is evident. The results emphasize the sensitivity of the thermoacoustic instabilities on the confinement configuration and indicate the dependence of their oscillation amplitudes on the location of the swirl flame in the combustion chamber.
000894808 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894808 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894808 7001_ $$0P:(DE-Juel1)186964$$aPausch, Konrad$$b1$$ufzj
000894808 7001_ $$0P:(DE-HGF)0$$aLoosen, Simon$$b2
000894808 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b3
000894808 773__ $$0PERI:(DE-600)2000795-4$$a10.1016/j.combustflame.2021.111701$$gp. 111701 -$$p111701$$tCombustion and flame$$v235$$x0010-2180$$y2022
000894808 8564_ $$uhttps://juser.fz-juelich.de/record/894808/files/final%20submission%20version%20of%20the%20revised%20manuscript.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000894808 909CO $$ooai:juser.fz-juelich.de:894808$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894808 9141_ $$y2022
000894808 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000894808 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894808 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000894808 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMBUST FLAME : 2021$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000894808 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMBUST FLAME : 2021$$d2022-11-18
000894808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188669$$aForschungszentrum Jülich$$b0$$kFZJ
000894808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186964$$aForschungszentrum Jülich$$b1$$kFZJ
000894808 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000894808 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000894808 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894808 920__ $$lyes
000894808 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894808 980__ $$ajournal
000894808 980__ $$aVDB
000894808 980__ $$aUNRESTRICTED
000894808 980__ $$aI:(DE-Juel1)JSC-20090406
000894808 9801_ $$aFullTexts