000894812 001__ 894812
000894812 005__ 20210914122703.0
000894812 0247_ $$2doi$$a10.5194/amt-14-5873-2021
000894812 0247_ $$2ISSN$$a1867-1381
000894812 0247_ $$2ISSN$$a1867-8548
000894812 0247_ $$2Handle$$a2128/28614
000894812 0247_ $$2altmetric$$aaltmetric:112634815
000894812 0247_ $$2WOS$$aWOS:000692537200001
000894812 037__ $$aFZJ-2021-03407
000894812 041__ $$aEnglish
000894812 082__ $$a550
000894812 1001_ $$0P:(DE-HGF)0$$aWright, Corwin J.$$b0$$eCorresponding author
000894812 245__ $$aUsing vertical phase differences to better resolve 3D gravity wave structure
000894812 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000894812 3367_ $$2DRIVER$$aarticle
000894812 3367_ $$2DataCite$$aOutput Types/Journal article
000894812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631106716_30159
000894812 3367_ $$2BibTeX$$aARTICLE
000894812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894812 3367_ $$00$$2EndNote$$aJournal Article
000894812 520__ $$aAtmospheric gravity waves (GWs) are a critically important dynamical mechanism in the terrestrial atmosphere, with significant effects on weather and climate. They are geographically ubiquitous in the middle and upper atmosphere, and thus, satellite observations are key to characterising their properties and spatial distribution. Nadir-viewing satellite instruments characterise the short horizontal wavelength portion of the GW spectrum, which is important for momentum transport; however, these nadir-sensing instruments have coarse vertical resolutions. This restricts our ability to characterise the 3D structure of these waves accurately, with important implications for our quantitative understanding of how these waves travel and how they drive the atmospheric circulation when they break. Here, we describe, implement and test a new spectral analysis method to address this problem. This method is optimised for the characterisation of waves in any three-dimensional data set where one dimension is of coarse resolution relative to variations in the wave field, a description which applies to GW-sensing nadir-sounding satellite instruments but which is also applicable in other areas of science. We show that our new “2D + 1 ST” method provides significant benefits relative to existing spectrally isotropic methods for characterising such waves. In particular, it is much more able to detect regional and height variations in observed vertical wavelength and able to properly characterise extremely vertically long waves that extend beyond the data volume.
000894812 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894812 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894812 7001_ $$0P:(DE-HGF)0$$aHindley, Neil P.$$b1
000894812 7001_ $$00000-0003-2495-3597$$aAlexander, M. Joan$$b2
000894812 7001_ $$00000-0003-0211-053X$$aHolt, Laura A.$$b3
000894812 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b4
000894812 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-5873-2021$$gVol. 14, no. 9, p. 5873 - 5886$$n9$$p5873 - 5886$$tAtmospheric measurement techniques$$v14$$x1867-8548$$y2021
000894812 8564_ $$uhttps://juser.fz-juelich.de/record/894812/files/amt-14-5873-2021.pdf$$yOpenAccess
000894812 909CO $$ooai:juser.fz-juelich.de:894812$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b4$$kFZJ
000894812 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894812 9141_ $$y2021
000894812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000894812 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894812 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000894812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000894812 920__ $$lyes
000894812 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894812 980__ $$ajournal
000894812 980__ $$aVDB
000894812 980__ $$aUNRESTRICTED
000894812 980__ $$aI:(DE-Juel1)JSC-20090406
000894812 9801_ $$aFullTexts