| Home > Publications database > Single-particle cryo-EM: alternative schemes to improve dose efficiency > print |
| 001 | 894822 | ||
| 005 | 20210930133540.0 | ||
| 024 | 7 | _ | |a 10.1107/S1600577521007931 |2 doi |
| 024 | 7 | _ | |a 0909-0495 |2 ISSN |
| 024 | 7 | _ | |a 1600-5775 |2 ISSN |
| 024 | 7 | _ | |a 2128/28606 |2 Handle |
| 024 | 7 | _ | |a altmetric:112434317 |2 altmetric |
| 024 | 7 | _ | |a pmid:34475283 |2 pmid |
| 024 | 7 | _ | |a WOS:000693111600009 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-03408 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 550 |
| 100 | 1 | _ | |a Zhang, Yue |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Single-particle cryo-EM: alternative schemes to improve dose efficiency |
| 260 | _ | _ | |a [S.l.] |c 2021 |b Wiley-Blackwell |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1631023958_12534 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Imaging of biomolecules by ionizing radiation, such as electrons, causes radiation damage which introduces structural and compositional changes of the specimen. The total number of high-energy electrons per surface area that can be used for imaging in cryogenic electron microscopy (cryo-EM) is severely restricted due to radiation damage, resulting in low signal-to-noise ratios (SNR). High resolution details are dampened by the transfer function of the microscope and detector, and are the first to be lost as radiation damage alters the individual molecules which are presumed to be identical during averaging. As a consequence, radiation damage puts a limit on the particle size and sample heterogeneity with which electron microscopy (EM) can deal. Since a transmission EM (TEM) image is formed from the scattering process of the electron by the specimen interaction potential, radiation damage is inevitable. However, we can aim to maximize the information transfer for a given dose and increase the SNR by finding alternatives to the conventional phase-contrast cryo-EM techniques. Here some alternative transmission electron microscopy techniques are reviewed, including phase plate, multi-pass transmission electron microscopy, off-axis holography, ptychography and a quantum sorter. Their prospects for providing more or complementary structural information within the limited lifetime of the sample are discussed. |
| 536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
| 536 | _ | _ | |a Q-SORT - QUANTUM SORTER (766970) |0 G:(EU-Grant)766970 |c 766970 |f H2020-FETOPEN-1-2016-2017 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Lu, Peng-Han |0 P:(DE-Juel1)167381 |b 1 |
| 700 | 1 | _ | |a Rotunno, Enzo |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Troiani, Filippo |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a van Schayck, J. Paul |0 0000-0001-6591-4637 |b 4 |
| 700 | 1 | _ | |a Tavabi, Amir H. |0 P:(DE-Juel1)157886 |b 5 |
| 700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 6 |
| 700 | 1 | _ | |a Grillo, Vincenzo |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Peters, Peter J. |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Ravelli, Raimond B. G. |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
| 773 | _ | _ | |a 10.1107/S1600577521007931 |g Vol. 28, no. 5, p. 1343 - 1356 |0 PERI:(DE-600)2021413-3 |n 5 |p 1343 - 1356 |t Journal of synchrotron radiation |v 28 |y 2021 |x 1600-5775 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/894822/files/Zhang_manuscript_revision3.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/894822/files/gm5085.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:894822 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167381 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 0000-0001-6591-4637 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)157886 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144121 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-04 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J SYNCHROTRON RADIAT : 2019 |d 2021-02-04 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-04 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-04 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-04 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-04 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|