000894825 001__ 894825
000894825 005__ 20241023211802.0
000894825 0247_ $$2doi$$a10.1016/j.apsusc.2021.150909
000894825 0247_ $$2ISSN$$a0169-4332
000894825 0247_ $$2ISSN$$a1873-5584
000894825 0247_ $$2Handle$$a2128/28607
000894825 0247_ $$2WOS$$aWOS:000759710000001
000894825 0247_ $$2altmetric$$aaltmetric:114224738
000894825 037__ $$aFZJ-2021-03409
000894825 082__ $$a660
000894825 1001_ $$0P:(DE-HGF)0$$aWrana, Dominik$$b0$$eCorresponding author
000894825 245__ $$aPhotoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics
000894825 260__ $$aAmsterdam$$bElsevier$$c2021
000894825 3367_ $$2DRIVER$$aarticle
000894825 3367_ $$2DataCite$$aOutput Types/Journal article
000894825 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729682109_26764
000894825 3367_ $$2BibTeX$$aARTICLE
000894825 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894825 3367_ $$00$$2EndNote$$aJournal Article
000894825 520__ $$aUnderstanding the mechanisms of charge generation and their recombination in rutile TiO2 is of key importance in the design of optoelectronic and photocatalytic devices. In this study, we investigate the impact of both extrinsic and intrinsic defects on photoluminescence (PL) decay dynamics. The exploitation of two-photon fluorescence lifetime imaging microscopy (FLIM) enabled differentiation to be made between photoluminescence originating from dislocations and bulk in Nb-doped rutile TiO2. It was found that dislocations pinned at grain boundaries feature lower photoluminescence intensity and faster decay times (by 100 ps) than those in the bulk. This can be reversed upon reduction, whereby trap states are preferentially formed near to dislocation sites. We also evaluated the dependence of the extrinsic doping level on the charge carrier dynamics of rutile, and show that PL lifetimes are governed by predominant Auger processes that are insensitive to reduction, unlike dislocations. We believe that the oxygen deficiency suppression of charge carrier recombination at grain boundaries is the key factor in improving the photocatalytic activity of real TiO2-based materials.
000894825 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000894825 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000894825 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894825 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b1$$ufzj
000894825 7001_ $$0P:(DE-Juel1)131197$$aJany, Benedykt R.$$b2
000894825 7001_ $$0P:(DE-HGF)0$$aCieślik, Karol$$b3
000894825 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b4$$ufzj
000894825 7001_ $$0P:(DE-HGF)0$$aCempura, Grzegorz$$b5
000894825 7001_ $$0P:(DE-HGF)0$$aKruk, Adam$$b6
000894825 7001_ $$0P:(DE-HGF)0$$aKrok, Franciszek$$b7
000894825 773__ $$0PERI:(DE-600)2002520-8$$a10.1016/j.apsusc.2021.150909$$gVol. 569, p. 150909 -$$p150909 -$$tApplied surface science$$v569$$x0169-4332$$y2021
000894825 8564_ $$uhttps://juser.fz-juelich.de/record/894825/files/1-s2.0-S016943322101967X-main.pdf$$yOpenAccess
000894825 909CO $$ooai:juser.fz-juelich.de:894825$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000894825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b1$$kFZJ
000894825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b4$$kFZJ
000894825 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000894825 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000894825 9141_ $$y2021
000894825 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000894825 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894825 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SURF SCI : 2019$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL SURF SCI : 2019$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894825 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000894825 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000894825 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894825 920__ $$lyes
000894825 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000894825 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x1
000894825 980__ $$ajournal
000894825 980__ $$aVDB
000894825 980__ $$aI:(DE-Juel1)IBI-1-20200312
000894825 980__ $$aI:(DE-Juel1)IET-4-20191129
000894825 980__ $$aUNRESTRICTED
000894825 9801_ $$aFullTexts