001     894825
005     20241023211802.0
024 7 _ |a 10.1016/j.apsusc.2021.150909
|2 doi
024 7 _ |a 0169-4332
|2 ISSN
024 7 _ |a 1873-5584
|2 ISSN
024 7 _ |a 2128/28607
|2 Handle
024 7 _ |a WOS:000759710000001
|2 WOS
024 7 _ |a altmetric:114224738
|2 altmetric
037 _ _ |a FZJ-2021-03409
082 _ _ |a 660
100 1 _ |a Wrana, Dominik
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Photoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729682109_26764
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the mechanisms of charge generation and their recombination in rutile TiO2 is of key importance in the design of optoelectronic and photocatalytic devices. In this study, we investigate the impact of both extrinsic and intrinsic defects on photoluminescence (PL) decay dynamics. The exploitation of two-photon fluorescence lifetime imaging microscopy (FLIM) enabled differentiation to be made between photoluminescence originating from dislocations and bulk in Nb-doped rutile TiO2. It was found that dislocations pinned at grain boundaries feature lower photoluminescence intensity and faster decay times (by 100 ps) than those in the bulk. This can be reversed upon reduction, whereby trap states are preferentially formed near to dislocation sites. We also evaluated the dependence of the extrinsic doping level on the charge carrier dynamics of rutile, and show that PL lifetimes are governed by predominant Auger processes that are insensitive to reduction, unlike dislocations. We believe that the oxygen deficiency suppression of charge carrier recombination at grain boundaries is the key factor in improving the photocatalytic activity of real TiO2-based materials.
536 _ _ |a 5243 - Information Processing in Distributed Systems (POF4-524)
|0 G:(DE-HGF)POF4-5243
|c POF4-524
|f POF IV
|x 0
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 1
|u fzj
700 1 _ |a Jany, Benedykt R.
|0 P:(DE-Juel1)131197
|b 2
700 1 _ |a Cieślik, Karol
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rodenbücher, Christian
|0 P:(DE-Juel1)142194
|b 4
|u fzj
700 1 _ |a Cempura, Grzegorz
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kruk, Adam
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Krok, Franciszek
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.apsusc.2021.150909
|g Vol. 569, p. 150909 -
|0 PERI:(DE-600)2002520-8
|p 150909 -
|t Applied surface science
|v 569
|y 2021
|x 0169-4332
856 4 _ |u https://juser.fz-juelich.de/record/894825/files/1-s2.0-S016943322101967X-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894825
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142194
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5243
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SURF SCI : 2019
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL SURF SCI : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
920 1 _ |0 I:(DE-Juel1)IET-4-20191129
|k IET-4
|l Elektrochemische Verfahrenstechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a I:(DE-Juel1)IET-4-20191129
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21