000894827 001__ 894827
000894827 005__ 20240712084622.0
000894827 0247_ $$2doi$$a10.3390/fluids6040161
000894827 0247_ $$2Handle$$a2128/28608
000894827 0247_ $$2altmetric$$aaltmetric:104777348
000894827 0247_ $$2WOS$$aWOS:000642961700001
000894827 037__ $$aFZJ-2021-03411
000894827 082__ $$a530
000894827 1001_ $$00000-0001-8866-9400$$aWenig, Philipp J.$$b0$$eCorresponding author
000894827 245__ $$aTowards Uncertainty Quantification of LES and URANS for the Buoyancy-Driven Mixing Process between Two Miscible Fluids—Differentially Heated Cavity of Aspect Ratio 4
000894827 260__ $$aBelgrade$$bMDPI$$c2021
000894827 3367_ $$2DRIVER$$aarticle
000894827 3367_ $$2DataCite$$aOutput Types/Journal article
000894827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631025298_12534
000894827 3367_ $$2BibTeX$$aARTICLE
000894827 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894827 3367_ $$00$$2EndNote$$aJournal Article
000894827 520__ $$aNumerical simulations are subject to uncertainties due to the imprecise knowledge of physical properties, model parameters, as well as initial and boundary conditions. The assessment of these uncertainties is required for some applications. In the field of Computational Fluid Dynamics (CFD), the reliable prediction of hydrogen distribution and pressure build-up in nuclear reactor containment after a severe reactor accident is a representative application where the assessment of these uncertainties is of essential importance. The inital and boundary conditions that significantly influence the present buoyancy-driven flow are subject to uncertainties. Therefore, the aim is to investigate the propagation of uncertainties in input parameters to the results variables. As a basis for the examination of a representative reactor test containment, the investigations are initially carried out using the Differentially Heated Cavity (DHC) of aspect ratio 4 with Ra=2×109 as a test case from the literature. This allows for gradual method development for guidelines to quantify the uncertainty of natural convection flows in large-scale industrial applications. A dual approach is applied, in which Large Eddy Simulation (LES) is used as reference for the Unsteady Reynolds-Averaged Navier–Stokes (URANS) computations. A methodology for the uncertainty quantification in engineering applications with a preceding mesh convergence study and sensitivity analysis is presented. By taking the LES as a reference, the results indicate that URANS is able to predict the underlying mixing process at Ra=2×109 and the variability of the result variables due to parameter uncertainties
000894827 536__ $$0G:(DE-HGF)POF4-1421$$a1421 - Design Basis Accidents and Materials Research (POF4-142)$$cPOF4-142$$fPOF IV$$x0
000894827 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894827 7001_ $$0P:(DE-Juel1)179512$$aJi, Ruiyun$$b1$$ufzj
000894827 7001_ $$0P:(DE-Juel1)130361$$aKelm, Stephan$$b2
000894827 7001_ $$0P:(DE-Juel1)180412$$aKlein, Markus$$b3
000894827 773__ $$0PERI:(DE-600)2882362-X$$a10.3390/fluids6040161$$gVol. 6, no. 4, p. 161 -$$n4$$p161 -$$tFluids$$v6$$x2311-5521$$y2021
000894827 8564_ $$uhttps://juser.fz-juelich.de/record/894827/files/fluids-06-00161-v2.pdf$$yOpenAccess
000894827 909CO $$ooai:juser.fz-juelich.de:894827$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179512$$aForschungszentrum Jülich$$b1$$kFZJ
000894827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130361$$aForschungszentrum Jülich$$b2$$kFZJ
000894827 9131_ $$0G:(DE-HGF)POF4-142$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1421$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vSicherheit von Kernreaktoren$$x0
000894827 9141_ $$y2021
000894827 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000894827 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894827 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894827 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000894827 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000894827 920__ $$lyes
000894827 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000894827 9801_ $$aFullTexts
000894827 980__ $$ajournal
000894827 980__ $$aVDB
000894827 980__ $$aUNRESTRICTED
000894827 980__ $$aI:(DE-Juel1)IEK-6-20101013
000894827 981__ $$aI:(DE-Juel1)IFN-2-20101013