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Abstract: Numerical simulations are subject to uncertainties due to the imprecise knowledge of
physical properties, model parameters, as well as initial and boundary conditions. The assessment of
these uncertainties is required for some applications. In the field of Computational Fluid Dynamics
(CFD), the reliable prediction of hydrogen distribution and pressure build-up in nuclear reactor
containment after a severe reactor accident is a representative application where the assessment of
these uncertainties is of essential importance. The inital and boundary conditions that significantly
influence the present buoyancy-driven flow are subject to uncertainties. Therefore, the aim is to
investigate the propagation of uncertainties in input parameters to the results variables. As a basis for
the examination of a representative reactor test containment, the investigations are initially carried
out using the Differentially Heated Cavity (DHC) of aspect ratio 4 with Ra = 2× 109 as a test case
from the literature. This allows for gradual method development for guidelines to quantify the
uncertainty of natural convection flows in large-scale industrial applications. A dual approach is
applied, in which Large Eddy Simulation (LES) is used as reference for the Unsteady Reynolds-
Averaged Navier–Stokes (URANS) computations. A methodology for the uncertainty quantification
in engineering applications with a preceding mesh convergence study and sensitivity analysis is
presented. By taking the LES as a reference, the results indicate that URANS is able to predict
the underlying mixing process at Ra = 2× 109 and the variability of the result variables due to
parameter uncertainties.

Keywords: uncertainty quantification; sensitivity analysis; natural convection; mixing process;
differentially heated cavity; LES; URANS

1. Introduction

Numerical approximations and mathematical models are used to solve technical
issues in computational science and engineering. Each of these numerical simulations is
inherently subject to uncertainties, and in some applications, their consideration is essential.
An important representative of this category in the field of Computational Fluid Dynamics
(CFD) is the reliable prediction of hydrogen distribution and pressure build-up in nuclear
reactor containment during an accident scenario, which is of utmost importance with
regard to maintaining the integrity of the containment and thus preventing the release of
radioactive substances [1,2]. An illustration of the primary coolant system of a nuclear
power plant and of the prevailing processes during a severe nuclear accident scenario is
shown in Figure 1. Figure 1c shows consecutive mechanisms within the reactor pressure
vessel. Decay heat production of the core leads first to heating and then to evaporation
of the water in the reactor pressure vessel. After the core is uncovered, the fuel begins
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to overheat because the heat transfer from the fuel to the steam is less than to the liquid
water. The cladding tubes of the fuel rods consist of a zirconium alloy (Figure 1d), which
reacts with the surrounding water vapour at temperatures above 1100 K. Zirconium
oxide and hydrogen are formed within an exothermic reaction. Hence, additional energy is
released, which heats the fuel rods and increases the reaction rate and hydrogen production.
Furthermore, large quantities of hydrogen are additionally produced after the failure of the
reactor pressure vessel during nuclear meltdown of the fuel when the concrete decomposes
(Figure 1c). After pressure relief of the reactor cooling circuit or the melting through the
reactor pressure vessel with the associated Molten Core–Concrete Interaction (MCCI), the
hydrogen is released into the containment. An ignitable hydrogen air–steam gas mixture
can be formed from the hydrogen, the atmospheric oxygen present in the containment, and
the evaporated water. If the ignition of this hydrogen air–steam gas mixture occurs, the
integrity of the containment is jeopardized since the design pressure of the containment
may be exceeded. As a result, radioactive material would be released into the environment.
Therefore, for safety, it is essential to understand the transport and mixing processes of
hydrogen in the containment [3–5].

Figure 1. Schematic structure of the primary coolant system in a nuclear power plant and illustration
of the processes after a severe nuclear reactor accident: (a) nuclear reactor with reactor facilities,
(b) nuclear reactor after a severe nuclear reactor accident, (c) consecutive mechanisms occurring
during a nuclear meltdown from left to right, and (d) structure of a fuel rod.

By means of Computational Fluid Dynamics (CFD), the flow and transport processes
prevailing in the containment, which are primarly driven by buoyancy effects, can be calcu-
lated numerically. Numerous investigations have been conducted to predict the formation,
stability, and erosion of a local flammable gas layer. For validation of the CFD models
under application relevant conditions, the THAI test series is part of a comprehensive
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concept [6]. The acronym THAI stands for Thermal-hydraulics Hydrogen, Aerosols and
Iodine. The THAI facility is a unique, technical-scale plant built for experimental research
in nuclear reactor containment safety, which is often used for the validation of CFD codes.

In this work, the focus is on the buoyancy-driven mixing process of two miscible
fluids. Since hydrogen is a highly flammable gas, helium is used in the experiments. The
stratification and mixing phenomena are primarily governed by the density differences in
the atmosphere. Both helium and hydrogen are characterized by a much smaller molecular
mass compared to air. Since the difference in the molecular weights of these light gases
causes only a very small contribution to the atmospheric density differences, similar
volumetric concentrations are achieved. Different physical properties, such diffusivity,
thermal conductivity, or heat capacity, are of minor impact. Therefore, the buoyancy-driven
mixing process with helium instead of hydrogen can provide appropriate knowledge about
the flow present in the containment [6].

In the corresponding THAI TH22 experiment, which examines the erosion by natural
convection of a stratified helium layer, an unstable stratification is established by cooling
the upper third and by heating two lower thirds of the cylindrical vessel walls. The
experiment is comprise of three consecutive phases. The first is the initial phase in which
natural circulation with air is established, as shown in Figure 2a. This is followed by the
injection phase (Figure 2b), in which helium is injected into the reactor test containment
through a nozzle and the circulation is suppressed. After the injection process has been
completed and a stable stratification has formed, the erosion phase of the helium layer
begins, as can be seen in Figure 2c. Once the circulation forms again, the stratification is
eroded rapidly, as shown in Figure 2d.

Figure 2. Consecutive phases of the TH22-experiment: (a) initial phase, (b) injection phase, (c) start
of erosion phase, and (d) final erosion phase.

On the basis of the natural convection experiments MISTRA NATHCO (CEA, France)
and THAI TH22 (Becker Technologies, Germany), CFD analysis revealed a significant influ-
ence of the specified initial and boundary conditions (e.g., initial gas and wall temperatures)
on the mixing process of air and helium [7]. However, the definition of initial and boundary
conditions are subject to uncertainties in CFD simulations, since measurement errors in
experiments occur or a lack of required input variables, which cannot be measured with
justifiable effort, exists [8,9]. Thus, the configuration is not sufficiently specified precisely.
This leads to results that also contain uncertainties. For their evaluation though, insufficient
experience exists [10,11]. For the exploration and further development of Uncertainty
Quantification (UQ) methods, the investigation of a single-phase mixing process by means
of CFD is recommended [12].

Therefore, the aim of this work is to investigate the propagation of uncertainties in
initial and boundary conditions as well as in material values for this application. As a
basis for later examination of the THAI containment (Figure 3b), the investigations are
initially carried out using a test case from the literature [13] with a superimposed mixing
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process, shown in Figure 3a. This allows for gradual development of guidelines to quantify
the uncertainty of natural convection flows in large-scale industrial applications, which
is the primary purpose of this work. Noting that uncertainty quantification requires a
large number of Large Eddy Simulation (LES) runs to be performed, the deliberate choice
of performing engineering LES requires compromises in terms of mesh resolution and
numerical techniques. Appropriate parameters have been selected based on the results
in Section 3.1 as a balance between accuracy, robustness, and computing efficiency. The
geometry corresponds to a tall cavity with a height-to-width ratio of 4, for which the left
wall has a higher temperature compared to the right side, and thus, natural convection
is formed within the cavity. The configuration is generally referred to as a Differentially
Heated Cavity (DHC). This simplified test case, which reflects similar physics as those
expected inside the reactor containment, enables a simple and clear comparison of the
results in the course of method development, since interpretation of the changing physical
effects that result from varying the initial and boundary conditions is easier. Moreover,
computations of the simplified test case are more resource-efficient and allow for different
analysis methods to be applied.

Figure 3. Sketch of the idealized configuration and THAI application case: (a) generic test case from
the literature with a superimposed mixing process and (b) THAI containment with a mixing process.

A few related studies are reported in the literature and will be briefly summarized
in the following. An uncertain single-phase turbulent mixing process in the presence of
density gradients was investigated within a flow channel, where two co-flowing water
streams were initially separated by the splitter plate. Sucrose was used to increase the
density of one water stream to achieve density differences between the two streams of
up to 10%. Various methodologies for uncertainty quantification were applied, and final
assessment of the UQ methodologies was based on experimental results. Turbulent mixing
in the presence of density gradients is a typical situation encountered in many reactor
issues and is of practical interest to nuclear reactor safety [14–18].

Uncertain thermo-fluid flow within a cubic DHC was studied by Le Maître et al. in
the Boussinesq [19] and non-Boussinesq limits [20] implementing the variable-density low-
Mach-number equations using an intrusive Polynomial Chaos Expansion (PCE) approach.
A steady laminar recirulating flow regime was investigated. The cold wall temperature was
presumed as uncertain, and arising uncertainties in the mean velocity field were analysed.
Rayleigh–Bénard convection (RBC) in the Boussinesq limit using PCE was analysed in [21].
For this configuration, the heated bottom wall was considered uncertain. In the present
work, the application of uncertainty quantification is extended to the buoyancy-driven
turbulent mixing process between two miscible fluids within the DHC. Integral result
quantities are used to evaluate the transient mixing process. Developed methods can be
transferred to other applications.

Uncertainty can be classified into aleatoric and epistemic uncertainties. Aleatoric
uncertainty describes the natural randomness in a process. For example, turbulence is
characterized by a three-dimensional flow field with an apparently randomly varying
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component in time and space. Hence, turbulent flow has aleatoric character. Epistemic
uncertainty is defined as any lack of knowledge or information in any phase or activity
of the modeling process, e.g., by inaccurate measurement or neglect of certain effects by
models [22]. Unsteady Reynolds-Averaged Navier–Stokes (URANS) computations, due
to the low computational effort, have a high degree of modelling and thus possibly high
epistemic uncertainties, which makes it less reliable compared to Large Eddy Simulation
(LES). In URANS, the complete turbulence spectrum is modeled and the Navier–Stokes
equation is perfectly deterministic [23]. Uncertainties that originate from modeling of
turbulence are epistemic since the uncertainty is based on incomplete knowledge [22].
Therefore, a dual approach is applied, in which the LES method is used as a reference
for the URANS computations to be able to make statements on the uncertainty of the
URANS modelling.

By direct comparison of the results between LES and URANS, it can be assessed to
what extent a URANS-based sensitivity and uncertainty analysis can reflect the variability
of a result variable as a function of an input variable. Furthermore, the parameters are
revealed, which have major influences on the mixing process of two miscible fluids driven
by buoyancy effects.

2. Numerical Methods and Flow Configuration

In Section 2.1, the governing equations are introduced while the flow configurations
and numerical techniques are detailed in Sections 2.2 and 2.3.

2.1. Governing Equations

The extensions of the computational domain are height H, width W, and depth D.
The height-to-width aspect ratio and the width-to-depth aspect ratio are ϕHW = H/W
and ϕWD = W/D, respectively. Besides the initial and boundary conditions, the physics
are completely defined by the Prandtl number Pr = ν/α; the height-to-width aspect ratio

ϕHW , which is equal to 4; and the Rayleigh number Ra = gβ∆TH3

να , which is equal to 2× 109.
Periodic flow is assumed in the third spatial direction. For the mesh convergence study,
the DHC was considered filled with a single incompressible Newtonian viscous fluid of
kinematic viscosity ν and thermal diffusivity α. The Prandtl number Pr = 0.71 corresponds
to air. The modelled URANS/LES equations of an incompressible fluid for continuity,
momentum, and temperature considering the Boussinesq approximation are

∇ · u = 0,
∂u
∂t

+∇ · (uu) = − 1
ρ0
· (∇p− ρg) +∇ ·

(
2νe f f D(u)

)
,

∂T
∂t

+∇ · (uT) = ∇ ·
(

αe f f (∇T)
)

,

(1)

where u is the velocity field, ρ is the density field, p is the static pressure field, T is the
temperature field, and g = (0, g, 0) is the gravitational acceleration vector. The density
ρ in the gravitational term is expressed by the linear function of the temperature T: ρ ≈
ρβ

(
1− β

(
T − Tβ

))
. β is the volumetric thermal expansion coefficient. We denote the

reference density by ρβ at the reference temperature Tβ. The rate of strain tensor is defined

as D(u) = 1
2

(
∇ · u + (∇ · u)T

)
. The effective kinematic viscosity νe f f is the sum of the

molecular and turbulent or subgrid-scale viscosity regarding URANS and LES, respectively.
By using the gradient flux approach with the turbulent Prandtl number Prt = 0.85, the
effective thermal diffusivity αe f f results as the following sum of laminar and turbulent or
subgrid-scale thermal diffusivities: αe f f =

ν
Pr +

νt
Prt

.
For the sensitivity analysis and uncertainty quantification, we considered a low Mach

number flow of two Newtonian viscous fluids in the cavity. The Prandtl numbers Pr = 0.71
and Pr = 0.66 used correspond to air and helium, respectively. The material values of air
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are used to define the Rayleigh number Ra = gβ∆TH3ρ
µα . The continuity, momentum, energy,

and mass transfer equations take the form

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu
∂t

+∇ · (ρuu) = −∇p + ρg +∇ ·
(

2µe f f D(u)
)
−∇ ·

(
2
3

µe f f (∇ · u)
)

,

∂ρh
∂t

+
∂ρK
∂t

+∇ · (ρuh) +∇ · (ρuK)− ∂p
∂t

= ∇ ·
(

ραe f f (∇h)
)
+ ρu · g + SD,

∂ρYi
∂t

+∇ · (ρuYi) = ∇ ·
(

ρDe f f (∇Yi)
)

,

(2)

where h is the enthalpy, K = 1
2 |u|

2 is the kinetic energy of the system, Yi is the mass fraction
of the ith species from the set of gas species indices given by N = {1, 2}, and SD accounts
for the enthalpy transport due to diffusive mass transport and the associated correction of
the heat conduction:

SD = ∑
i∈N
∇ ·

(
ρ
(

De f f − αe f f

)
cp,i T(∇Yi)

)
.

The effective dynamic viscosity µe f f is the sum of the molecular and turbulent or
subgrid-scale viscosity regarding URANS and LES, respectively. h is the sum of the internal
energy per unit mass e and the kinematic pressure h = e + p

ρ . The effective molecular
diffusivity De f f is the sum of the molecular and turbulent or subgrid-scale molecular
diffusivity: De f f = D + Dt. The molecular diffusivity is assumed to be constant. According
to the gradient flux approach, the thermal diffusivity results from αe f f = µ

ρ·Pr +
νt

Prt
and

the molecular diffusivity results from De f f = D + νt
Sct

with the turbulent Schmidt number
Sct = 0.85. Mixture properties ϕm are computed from the individual specie properties ϕi
and species mass fractions Yi : ϕm = ∑ i∈N Yi ϕi. A comprehensive model description can
be found in [24].

2.2. Case Definition

For the present work, different case definitions form the basis of the investigations
and the evaluation of the results. For validation of the results of the mesh convergence
study, the DHC with aspect ratio 4, which is filled with air, was analysed. A schematic
sketch is shown in Figure 4a and is referred to as the default case. Figure 4b,c represent a
test case that can be considered as an intermediate step between the THAI containment
and the DHC. Furthermore, important variables for normalization and parameter variation
are introduced.

The non-slip boundary condition is imposed on the velocity at the four enclosing
walls at x = 0, x = W, y = 0, and y = H. The cavity is subject to a temperature difference
∆T = Tle f t − Tright. Thermal radiation is neglected. The height H of the cavity is 1 m. A
2D simulation is considered with URANS. With LES, the third spatial dimension is taken
into account due to the three-dimensional character of turbulent flow. Hence, the flow
field is assumed to be periodic in the z-direction. For the mass fraction, a zero-gradient at
the enclosing walls is defined: ∂Yi

∂n

∣∣∣
∂Ω

= 0, where n denotes the wall-normal unit vector.
For LES, a zero gradient is defined for the turbulent viscosity and thermal diffusivity:
∂νt
∂n

∣∣∣
∂Ω

= 0, ∂αt
∂n

∣∣∣
∂Ω

= 0. The Wall-Adapting Local Eddy-viscosity (WALE) model with
Cw = 0.5 is applied for modelling viscous subgrid-scale effects [25]. For URANS, wall
functions are applied for the turbulent viscosity and thermal diffusivity.
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Figure 4. Investigated configurations of the Differentially Heated Cavity (DHC) with aspect ratio 4:
(a) default case, (b) reference case, and (c) parameter variation case.

The k-omega Shear Stress Transport (SST) turbulence model [26] is used with included
buoyancy terms, implemented in analogy with ANSYS CFX [27].

As initial conditions, temperature T0 = T = 298.15 K and pressure p0 = 1 bar are
applied. In the mesh convergence study, the cavity is filled with air and the top and bottom
walls are adiabatic: ∂T

∂y (y = 0) = 0 and ∂T
∂y (y = H) = 0. The temperature over the left and

right wall is constant. Since this configuration has been investigated with Direct Numerical
Simulation (DNS) [13], the results from the LES can be verified. This default case is shown
in Figure 4a.

As shown in Figure 4b, the same configuration is used as the reference case for the
sensitivity analysis and uncertainty quantification, with the difference that the upper
third contains 40 vol% of helium, which is uniformly distributed. This corresponds to
the uniform reference mole fraction X0 = 0.4. The material values for air and helium
at T = 298.15 K and p = 1 bar listed in Table A1 are applied. From this, the molecular
diffusion coefficient, which was assumed to be constant, was also derived using Fuller’s
method [28] with D0 = 6.904× 10−5 m2/s. The remaining properties are derived by the
ideal gas law at T = 298.15 K with the gas constant R: β = 1

T
, ρ = pM

RT
. To investigate the

influence of the initial and boundary conditions, different parameters are varied, which
were chosen to be representative of possible uncertainties in the THAI-TH22 experiment.
An illustration of the parameters is provided in Figure 4c.

Constant temperature specification or adiabatic conditions at the enclosing walls pro-
vide approximations for the real prevailing conditions in THAI containment. Insulations
are still thermally conductive and heat transfer between the heating fluid and the gas is
associated with a spatially variable temperature. Therefore, the variation in the thermal
boundary conditions includes the wall temperature difference between the left and right
walls, the wall-tangential temperature gradient at the left and right walls, and the tem-
peratures at the top and bottom walls of the cavity. The wall temperature difference is
defined by

Tle f t = T +
∆T
2

, ∆T = ϑ∆T0 = ϑ 21.431 K ,

Tright = T − ∆T
2

, (Tle f t + Tright)/2 = T = 298.15 K = const. ,
(3)

where ∆T0 is the reference temperature difference, ϑ describes the relative proportion of
the reference temperature difference, and ∆T describes the actual temperature difference



Fluids 2021, 6, 161 8 of 29

under consideration. The average temperature of the boundary is kept constant. The
wall-tangential temperature gradient is defined by

T(x = 0, ψ) =
φ∆T

H
ψ + Tle f t, ψ := y− H

2
,

T(x = W, ψ) =
φ∆T

H
ψ + Tright,

∂T
∂y

(x = 0∨ x = W) =
φ∆T

H
,

(4)

where φ indicates the relative proportion of the temperature change due to the temperature
gradient over the entire height to the characteristic temperature difference ∆T. This
temperature gradient also occurs in a real application within the heating and cooling
zones. The defined gradient increases linearly in the vertical direction and is identical on
the left and right walls to keep the local Rayleigh number constant. Since an adiabatic
wall is an idealized condition, a temperature profile is also defined for the upper and
lower walls to investigate the influence of the associated convective heat transfer on the
mixing process. To maintain consistency in the temperature field in the corners and edges,
a parabolic profile is applied that is continuous and fully defined by the inflection point
and the near wall temperature. A polynomial order of two was chosen for simplicity. The
temperature boundary layer width δT at the top and bottom walls is assumed to be 20 % of
the total width W. The definition of the temperature field at the top and bottom walls is

δT = xl = 0.2W, Ttop = Tle f t − θ∆T, (Ttop + Tbottom)/2 = T = 298.15 K = const. ,

xr = 0.8W, Tbottom = Tright + θ∆T,

T(x, y = H) =


T(x=0, y=H)−Ttop

δ2
T

(x− xl)
2 + Ttop, if x ≤ xl

T(x=W, y=H)−Ttop

δ2
T

(x− xr)
2 + Ttop, if x ≥ xr

Ttop, otherwise

(5)

T(x, y = 0) =


T(x=0, y=0)−Tbottom

δ2
T

(x− xl)
2 + Tbottom, if x ≤ xl

T(x=W, y=0)−Tbottom
δ2

T
(x− xr)

2 + Tbottom, if x ≥ xr

Tbottom, otherwise

where θ is the relative proportion of the characteristic temperature difference ∆T. In
addition, there is uncertainty in the actual build-up of the helium stratification after the
injection process. Therefore, the initial helium stratification is changed by variation in
the initial mole fraction difference ∆X. This is the deviation in the mole fraction at the
beginning of the helium stratification. The mole fraction of helium is linearly distributed
over the remaining height defined by the equations

h :=
2H
3

, υ := y− h = y− 2H
3

,

∆X = χX0, X(υ) =
2∆X

H − h
υ + (X0 − ∆X) =

2χX0

H − h
υ + X0(1− χ),

(6)

where χ is the relative proportion of the constant mole fraction X0 of the reference case.
Due to its significant influence with respect to the mixing process, the molecular diffusion
coefficient D in Equation (2) is also taken into account with

De f f = D + Dt , D = ξD0 , (7)

where ξ is the relative proportion of the reference molecular diffusivity D0.
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2.3. Numerical Framework and Spatial Discretization

The open-source C++ toolbox OpenFOAM v.1906 [29,30] was utilized for solving the
nonlinear set of governing equations in a finite-volume framework. The calculations for the
incompressible flow (Equation (1)) within the mesh convergence study were performed by
using the buoyantBoussinesqPimpleFoam solver. The equations for the low Mach number
flow (Equation (2)) when considering the mixing process were solved by the self-defined
buoyantMixingFoam solver. The pressure–velocity coupling was addressed by using the
PIMPLE algorithm. It is ensured that the normalized residuals fall below the value 10−4.
For the mesh convergence study, the convective and diffusive fluxes were evaluated by
second-order linear upwind and linear schemes, respectively. For the sensitivity and
uncertainty analysis, the convective momentum flux was evaluated by second-order linear
upwind. The remaining convective fluxes and diffusive fluxes were evaluated by the
limited linear scheme. The convective flux of the mass fraction was discretized by the
limited linear scheme that was bounded between 0 and 1. Temporal advancement was
achieved by blending between the Euler and Crank–Nicolson scheme with a value of 0.9,
which is a good compromise between accuracy and robustness. Here, 0 and 1 correspond
to Euler and Crank–Nicolson, respectively. For the mesh convergence study, it has been
ensured that the CFL number is always below the value of 0.5. For the sensitivity and
uncertainty analysis, the maximum CFL number of 0.9 was chosen as a compromise
between accuracy and stability. The spatial grid resolution has to be fine enough to resolve
most of the turbulent fluctuations for the LES. In Figure 5, the applied mesh refinement
strategy is shown. The mesh is refined linearly starting from the central planes of the cavity
in the direction of the walls with a constant factor. Due to the center-point-symmetrical
flow conditions, the mesh was also defined point symmetrically around the cavity center.
For the correct resolution of the wall-boundary layer, the dimensionless horizontal and
vertical normal wall distances x+⊥ = x/lτx = 1 and y+⊥ = y/lτy = 1 are applied. lτx = ν/uτx

and lτy = ν/uτy denote the viscous length at the vertical and horizontal walls, respectively.
uτx and uτy are the shear velocities at the vertical and horizontal walls, respectively. Within
a mesh convergence study the dimensionless wall tangential cell sizes ∆x+‖ = ∆xc/lτy and

∆y+‖ = ∆yc/lτx at the central planes of the cavity are stepwise refined. A sufficient length
in the periodic direction ϕWD = W/D = 1 is applied to ensure that turbulence fluctuations
are uncorrelated at a separation of one half-period [13]. The mesh in the periodic direction
is uniformly distributed with ∆z+ = ∆z/lτx = 20. lτx is applied for the definition of ∆z+

because lτx takes on smaller values than lτy and therefore provides a more strict condition.
The mesh was built with the parameters listed in Table A2.

Figure 5. Spatial discretization of the computational domain and mesh refinement strategy: (a) 3D
mesh for Large Eddy Simulation (LES) and (b) 2D mesh for Unsteady Reynolds-Averaged Navier–
Stokes (URANS). (c) Description.
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3. Results and Discussion

Before presenting the results of the sensitivity and uncertainty analysis in
Sections 3.3 and 3.4, respectively, the mesh convergence study is discussed in Section 3.1
and the quantities of interest are introduced in Section 3.2.

3.1. Mesh Convergence Study

First, a mesh convergence study for LES at Ra = 2× 109 was performed to determine
a mesh that satisfactorily balances accuracy and computing resources. The underlying
mesh refinement strategy is shown in Figure 5c. The mesh is linearly refined towards
the wall with a constant factor. The normal wall distance of the first cells ∆x and ∆y,
which correspond to the dimensionless wall distances x+⊥ = 1 and y+⊥ = 1, are kept
constant. This ensures correct resolution of the wall-boundary layer. The wall tangential
cell dimensions ∆xc and ∆yc at the central planes of the cavity are gradually refined
based on values for the dimensionless tangential cell size ∆x+‖ and ∆y+‖ from best practice

guidelines that can be found in the literature [31]. The recommendations are ∆+
⊥ ≈ 2,

∆+
‖ ≈ 50− 100, and ∆+

‖∗ ≈ 15− 20 for the wall-normal, streamwise, and spanwise grid

resolutions. Through the stepwise refinements of ∆x+‖ and ∆y+‖ through ∆xc and ∆yc , the
required number of cells in the boundary layer and the required wall tangential resolution
can be determined, which are crucial for correct calculation. It is possible to vary the
two parameters independently of each other in order to determine the appropriate wall
tangential and wall normal resolution. To keep the computational effort reasonable, the
parameters were changed simultaneously, assuming that the required dimensionless mesh
resolution is identical on the enclosing walls. An appropriate mesh for the large parametric
analysis balancing accuracy and computational effort was finally determined by using the
local Nusselt number as a convergence criterion: Nulocal = −(H (∂T/∂x)|wall)/∆T. For
this purpose, the time-averaged Nusselt number profile and the local standard deviation
were investigated. The results were obtained by averaging the profiles on the left and
right walls and by averaging in the z-direction for the 3D LES simulation. For time
averaging, the time t/

((
H2/α

)
Ra−1/2

)
= 800 [13] was used. Afterwards, the LES results

were compared with the DNS results using the mean absolute error (MAE) [32,33]. The
DNS was defined as a reference. avg and sdev denote the average value and standard
deviation, respectively. 〈·〉z,t denotes the temporal and spatial average in the periodic
direction. (·)′ is the fluctuating component according to ϕ = 〈ϕ〉t + ϕ′ with a flow property
ϕ and its temporal mean component 〈ϕ〉t. From this, the evaluation is described by the
following expressions:

MAE
LES , DNS

(avg(Nu)) =
1
H

∫ H

y=0
|〈NuLES〉z,t − 〈NuDNS〉z,t|dy , (8)

MAE
LES , DNS

(sdev(Nu)) =
1
H

∫ H

y=0

∣∣∣∣(〈(Nu′LES
)2〉z,t

) 1
2 −

(
〈
(

Nu′DNS
)2〉z,t

) 1
2
∣∣∣∣dy . (9)

Figure 6a–d clearly shows that, with increasing refinement, the LES results are in very
good agreement with the DNS results. Figure 6a,b shows the normalized MAE of the LES
from the DNS results regarding the average and standard deviation of Nu, which gradually
decreases when the mesh is refined. It can be seen in Figure 6a,b that, for ∆x+‖ , ∆y+‖ = 10,
the difference is very close to zero. The time-averaged local Nu number profile in Figure 6c
already shows good results with a coarse resolution of the domain. There are minor
differences near the top and bottom of the cavity. A detail plot within Figure 6c shows
the gradual convergence of the LES to the DNS profile. However, for a coarse grid, the
transition point, which corresponds to the point with maximum fluctuations and thus
the largest standard deviation, is not predicted properly, as can be seen in Figure 6d. In
addition, no recirculation zone is formed. The formation of the recirculation zone, as
previously described by Trias et al. [13], only takes place in the case of fine grids.
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Figure 6. Mesh convergence study: (a) relative Mean Average Error (MAE) of the Nu number,
(b) relative MAE of the standard deviation of the Nu number, (c) local Nu number profile on the
vertical walls, and (d) local standard deviation profile of the local Nu number.

Due to the fact that the recirculation zone does not develop and the transition occurs
further downstream for coarse grids, the fluid is diverted by the horizontal walls instead
and causes fluctuations when it hits the vertical walls.

To define a mesh that is accurate enough to reflect the global characteristics compared
to the DNS, an upper limit for the relative deviation between LES and DNS was defined:
MAE
LES , DNS

(avg(Nu))/〈avg(NuDNS)〉y ≤ εMAE ≈ 10−2 with 〈avg(NuDNS)〉y = 66.63 [13]. 〈·〉y
denotes the spatial average in the y-direction. This condition is fulfilled from a grid
resolution of ∆x+‖ , ∆y+‖ = 30. Therefore, this mesh resolution was selected for the following
investigations. The same spatial resolution was chosen for the LES and URANS to ensure
that the spatial discretization error is comparable and provides a direct comparison of the
methods independent of the discretization techniques. When considering the LES results,
the structure and spatial resolution of the boundary layer were investigated, as can be
seen in Figure 7. The thickness of the velocity boundary layer δu was determined by the
occurring inflection point (ip) in the velocity profile, which is characteristic for natural
convection. The temperature boundary layer δT was defined by a gradient criterion (grad):
∂T/∂x ≥ 10−2 ∂T/∂x|wall . These criteria made it possible to investigate the velocity and
temperature boundary layer thickness over the entire height in a consistent manner and to
determine the required number of cells in the boundary layer. The maximum root-mean-
square (rms) of the velocity, which takes place after reaching the maximum velocity, is
approximately in the area of the maximum velocity gradient, characterized by the inflection
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point. Therefore, the definition by the inflection point and the rms criterion are in good
agreement at the middle height plane, as shown in Figure 7a. The situation is analogous
for the temperature boundary layer. To achieve comparable results to the rms criterion,
the gradient criterion can be adjusted accordingly. From the results the mean cell number
was determined with the following expression: nδ = 1

H ∑ ∆yinδ, where ∆yi is the vertical
cell length of the corresponding cell, nδ is the respective number of cells in the boundary
layer, and nδ is the mean number of cells in the boundary layer over the entire height H.
With the previously defined criteria, this results in a velocity and temperature boundary
layer resolution of nδu/ip = 7.87 and nδT/grad = 10.10 respectively. The determination of the
required wall normal resolution with nδu/ip and nδT/grad and the required wall tangential
resolution ∆x+‖ and ∆y+‖ with the present mesh refinement strategy enables the transfer of
results to problems with similar physics such as the THAI containment.

Figure 7. Structure and spatial resolution of the boundary layer: (a) thickness of the velocity and
temperature boundary layer with the indicated wall-normal mesh resolution xgrid and (b) the number
of cells in the velocity and temperature boundary layer.

3.2. Quantities of Interest

Before the assessment of uncertainties and analyzing sensitivities, the result quantities,
which adequately describe the underlying physics of the mixing process in the cavity, have
to be defined. In the context of uncertainty quantification, these are referred to as Quantities
of Interest (QoI). For this purpose, integral scalar quantities provide a plain description
of the transient profiles of the mixing process. In this way, summarizing statements can
be made about the complete transient. Since the flow is driven by buoyancy effects, the
spatial averaged Nusselt number Nu over the respective walls is of paramount importance.
In this way, the convective heat transfer in the cavity is evaluated and the transients during
the mixing process can be examined more closely. It is determined by the expression

Nu =
1

Awall

∫
Awall

∂T
∂n

∣∣∣
wall

H

∆T
dA , (10)

where n denotes the wall-normal unit vector. The effects on the convection mechanisms
are described by global kinetic energy. Ek is the quotient of the global kinetic energy by a
reference kinetic energy α2

H2 Ra, which contains the material properties of air:

Ek =

(
α2

H2 Ra
)−1

· 1
M

∫
M

1
2

u2dm . (11)

m denotes the mass and M denotes the total mass of the fluid domain. Due to the thermal
boundary conditions, natural convection develops within the cavity and the helium stratifi-
cation is eroded. This mixing process continues until a homogeneous mixture finally forms.
The achievement of this state can be quantified by the mixture uniformity σX, which is
the volume-weighted standard deviation of the mole fraction X from the homogeneous
equilibrium state mole fraction X over the whole fluid domain. The initial mixture uni-
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formity σX0 is the highest occurring standard deviation during the mixing process. When
varying the initial mole fraction difference ∆X, the initial mixture uniformity σX0 changes.
Therefore, for normalization, the initial mixture uniformity σX0/re f of the reference case,
which corresponds to the initial conditions of a stratification with constant mole fraction,
is used. Following the definition of Danckwerts [34], this gives the expression for the
segregation intensity, described by the Equation (12):

I =
σ2

X
σ2

X0/re f

=
1
V
∫

V
(
X− X

)2dV

1
V
∫

V

(
X0/re f − X

)2
dV

(12)

From the segregation intensity I, the definition of the mixing intensityM = 1−
√

I [35]
can also be derived for the interpretation of the results. In the reference case, I = 1 describes
a completely inhomogeneous mixture and I = 0 characterizes a completely homogeneous
mixture and vice versa for the mixing intensityM. Since the initial state changes, when
the mole fraction difference ∆X is varied, the initial segregation intensity I is also different
and the mixture transients are consistently captured with all occuring changes. Finally, a
criterion for the mixing time can be derived from I. A completely homogeneous mixture is
characterized by I = 0, and therefore by definition of an upper bound I ≤ εI = 10−3, which
I has to fall below, the achievement of this state can be quantified. When considering mass
transfer processes, the Fourier number Fo = Dre f t/H2 enables a dimensionless description
of time, where Dre f = D0 is the diffusion coefficient of the reference case. Hence, the
time, when the homogeneous state is reached, can be described by Foε = Dre f tε/H2. The
time-dependent quantities described above are combined to the result variables vector R,
where the bold notation indicates a vector or matrix.

R =
(

Nule f t Nuright Nubottom Nutop Ek I
)

(13)

Together with Foε, additional scalar quantities that describe the mixing process
were derived. For this purpose, the integral mean value R̃ of the described quantities
R (Equation (13)) is formed over the respective mixing time in Equation (14).

R̃ =
1

Foε

∫ Foε

0
R(Fo)dFo (14)

Next to the actual integral mean value over the mixing process, this also provides a
measure of the shape of the mixing transient because transients, which can be mapped on
each other by linear stretching or compression of the time coordinate, have an identical
integral mean value. Therefore, occurring deviations also indicate a change in the shape of
the mixing transient. Because different transients can have the same integral mean value
R̃, the mean absolute deviation R̂ from the reference case over the reference mixing time
Foε/re f was therefore defined in Equation (15).

R̂ =
1

Foε/re f

∫ Foε/re f

0

∣∣∣R(Fo)− Rre f (Fo)
∣∣∣dFo (15)

All differences in the mixing transient are captured over the mixing time of the
reference case and provide a good measure for the variability. At the same time, it can be
determined how big the difference between the adiabatic configuration and a configuration
with temperature specification is. Finally, all variables under investigation are summarized
in a matrix in Equation (16).

R =

(
R̃ Foε

R̂ 0

)
=

(
Ñule f t Ñuright Ñubottom Ñutop Ẽk Ĩ Foε

N̂ule f t N̂uright N̂ubottom N̂utop Êk Î 0

)
(16)
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The results for the reference case are different for LES and URANS. The reference
values R re f /LES are applied to the LES results and the reference values R re f /URANS are
applied to the URANS results. As listed in Equation (17), the mean integral values of the
reference case R̃re f are applied for the normalization of the later results, since the mean
absolute deviation R̂re f from the reference case itself is zero.

Rre f =

(
R̃re f Foεre f

R̃re f 0

)
(17)

3.3. Sensitivity Analysis

For the investigation of uncertainties, identification of the most influential parameters
is of great importance, since uncertainties occurring in these parameters mainly dominate
the uncertainty in the results. Variance-based methods also enable quantification of the
proportion of the result uncertainty caused by individual parameters. Therefore, uncer-
tainty analysis is closely related to sensitivity analysis. For assessment of the sensitivities,
the Morris method is applied [36]. q denotes the parameter vector with the elements qi.
The defined parameter space of the computational model is explored by r-trajectories, for
which the initial points are gained by random sampling, and then one parameter after the
other is changed step by step. The respective trajectory is described by the index j. Then,
for each trajectory, the elementary effects dqi are calculated, which represent the gradient
when varying the ith parameter using the forward difference. From this, the mean and
modified mean of the elementary effects µqi

and µ∗qi
as well as the standard deviation of the

elementary effects σqi are determined. The modified mean indicates the overall effect and the
standard deviation indicates nonlinear or interaction effects between the input parameters.
For evaluation of the sensitivity, both parameters are important because a low value of µ∗qi
combined with a considerable value of σqi means that there is a great impact in certain
regions of the parameter space and that the corresponding parameter should be taken into
account for the subsequent analysis. The expressions for the calculation [36] are

d(j)
qi =

R
(

q(j) + ∆Θ · eqi

)
− R

(
q(j)

)
∆

, µqi
=

1
r

r

∑
j=1

d(j)
qi , ∆ =

p
2(p− 1)

,

σqi =

√√√√ 1
r− 1

r

∑
j=1

(
d(j)

qi − µqi

)2
, µ∗qi

=
1
r

r

∑
j=1

∣∣∣d(j)
qi

∣∣∣,
(18)

where eqi is the ith unit vector and the parameter step is ∆Θ = ∆Θ = p
2(p−1)Θ with the input

space uniformly partitioned into the even number of levels p. Θ denotes the parameter
interval width vector and ∆ describes the scalar parameter step. Global sensitivity analysis
requires a large number of trajectories r per parameter. However, a large number of
parameters in the mixing process are involved, which might be subject to uncertainties.
Therefore, the total number of parameters was divided into three parameter vectors to
maintain clarity for the further steps, such that the vector of input parameters is given by
q =

(
q I q II q III

)
with:

q I =
(
ϑ χ φ

)
, q II =

(
ξ θ

)
,

q III =
(
T0 cp/Air µAir PrAir cp/He µHe PrHe Sct Prt

)
.

(19)

First, the most important parameters are extracted by preselection with a one-at-a-time
(OAT) approach. Starting from an initial point q 0

oat in parameter space, the parameters
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were changed along each orthogonal dimension with two trajectories r = 2, respectively.
The initial point was defined as follows:

q 0
I =

(
1.0 0.0 0.1

)
, q 0

II =
(
1.0 0.2

)
,

q 0
III =

(
T 0

0 c 0
p/Air µ 0

Air Pr 0
Air c 0

p/He µ 0
He Pr 0

He Sc 0
t Pr 0

t

)
.

(20)

q 0
III takes the initial values from Section 2.2 and according to Table A1. The most influential

parameters were determined by assuming an identical parameter interval, which has the
width of 20 percent with respect to the corresponding nominal value in each parameter.
The associated values for Θ and ∆ result according to Table 1. Through this definition, the
parameters are varied symmetrically around the defined initial point with the assumed
standard deviation σQ in the parameters according to Section 3.4. The standard deviation
is representative for the total dispersion around the mean, and in this way, an estimation
for the mean impact of single parameters is achieved.

Table 1. Parameter variation values for the one-at-a-time (OAT) approach.

qoat i ϑ χ φ ξ

[q a
oat i

, q b
oat i

] [0.9, 1.1] [0.0, 0.2] [0.0, 0.2] [0.9, 1.1]
Θi 0.2 0.2 0.2 0.2
∆ ±0.5 +0.5/ + 1.0 ±0.5 ±0.5

qoat i θ T0 cp/Air µAir
[q a

oat i
, q b

oat i
] [0.1, 0.3] T 0

0 + [−0.1, 0.1]∆T0 [0.9, 1.1]cp/Air [0.9, 1.1]µAir
Θi 0.2 0.2∆T0 0.2cp/Air 0.2µAir
∆ ±0.5 ±0.5 ±0.5 ±0.5

qoat i PrAir cp/He µHe PrHe
[q a

oat i
, q b

oat i
] [0.9, 1.1]PrAir [0.9, 1.1]cp/He [0.9, 1.1]µHe [0.9, 1.1]PrHe

Θi 0.2PrAir 0.2cp/He 0.2µHe 0.2PrHe
∆ ±0.5 ±0.5 ±0.5 ±0.5

qoat i Sct Prt
[q a

oat i
, q b

oat i
] [0.9, 1.1]Sct [0.9, 1.1]Prt

Θi 0.2Sct 0.2Prt
∆ ±0.5 ±0.5

From the results, the modified mean µ∗qi
can be obtained. The standard deviation

σqi was not taken into account here, as the number of trajectories is small. Here, the
main criterion for the evaluation of the sensitivity was the mixing time measured by the
dimensionless Fourier number Foε = Dre f tε/H2. It can be seen in Figure 8 that the material
values such as the heat capacity cp/Air and cp/He, the dynamic viscosities µAir and µHe, as
well as PrHe have no great influence on the mixing time for Ra = 2× 109. Additionally, the
model coefficients of the gradient flux approach Sct and Prt do not show major impacts
on the mixing time. On the other hand, PrAir causes a medium impact, since the main
proportion of the mixture is air. However, it is assumed that there is a small uncertainty in
the prediction of material values. The thermal boundary conditions via ϑ, φ, and θ show
great influence on the mixing time, as the mixing process is primarily based on buoyancy
effects. The diffusion coefficient via ξ also leads to a large deviation. The change in the
helium stratification through χ also causes relevant differences in the mixing time.
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LES

URANS

Figure 8. Normalized modified mean µ∗q /Rre f for the mixing time Foε for LES and URANS.

On the basis of these findings, the five most important parameters were selected. These
are investigated next by Global Sensitivity Analysis (GSA) using the Morris method accord-
ing to Equation (18). Consequently, the parameter vector, which contains the prioritized
parameters, gives the following expression:

q morris =
(
q I q II

)
=
(
ϑ χ φ ξ θ

)
(21)

The input space is uniformly partitioned into four levels p = 4. For the parameter
intervals in Table 2 scaled to [0, 1], this results in the scalar parameter step ∆ = 2/3. A
random initial point q 0

morris is chosen from the set {0, 1/(p− 1), 2/(p− 1), . . . , 1} for each
parameter. Starting from this point, the parameters are changed in an arbitrary order. The
assessment of the sensitivity was conducted by r = 15 trajectories. In Table 2, the intervals
under investigation are listed. The parameter intervals were defined according to the
probability density functions according to Equation (31) in Section 3.4. With µQ and σQ
denoting the expectation and standard deviation of the random input variables Q, the
interval was defined by [µQ − 2σQ, µQ + 2σQ] as it contains the majority of all possible
parameter values. The aim of this study was to capture local interaction effects and possible
nonlinearities using a reasonable number of trajectories. With a constant number of levels
p, a wide interval width would lead to larger parameter steps, which cause less accurate
prediction of local effects. For this reason, the parameter intervals were chosen in this way.

Table 2. Parameter variation values for the Morris method.

qmorris i ϑ χ φ ξ θ

[q a
morris i

, q b
morris i

] [0.8, 1.2] [0.0, 0.4] [0.0, 0.3] [0.8, 1.2] [0.0, 0.4]
Θi 0.4 0.4 0.3 0.4 0.4

All previously described result variables according to Section 3.2 are examined. The
integral mean Nusselt number Ñu measures the convective heat transfer between the
fluid and the enclosing walls during the mixing process, which significantly influences the
mixing process. Heat is supplied on the left wall and dissipated on the right wall. Cold
gas coming from the right wall is heated by the lower wall and hot gas coming from the
left wall is cooled by the upper wall. Ñule f t and Ñuright, which are shown in Figure 9a,b,
exhibit the biggest change through the temperature specification of the associated walls via
ϑ because this simultaneously causes a change in the wall adjacent temperature gradient.
The remaining parameters show medium impact, which is comparable for these parameters,
when the values of the respective opposite walls are considered averaged with each other.
LES and URANS show almost linear behavior regarding the integral mean Nusselt number
in Equation (14), as can be seen in Figure 9e,f. Both approaches show good agreement.
Additionally, for Ñubottom and Ñutop, which are shown in Figure 9c,d, the corresponding
temperature specification via θ causes the greatest influence. The influence of χ is greater
at the top wall than at the bottom wall because the helium is initially placed at the top and
thus causes an influence during the mixing process. ξ leads to the smallest impact for this
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case. In comparison to the left and right walls, σqi has larger values for the bottom and top
walls. There is good correspondence between LES and URANS for both µ∗qi

and σqi at the
bottom and top walls.

LES

URANS

LES

URANS

Figure 9. Normalized modified mean µ∗q /Rre f and standard deviation σq/Rre f of the integral mean

Nusselt number: (a,e) on the left wall, Ñule f t; (b,f) on the right wall, Ñuright; (c,g) on the bottom wall,
Ñubottom; and (d,h) on the top wall, Ñutop.

N̂u is a quantity for measuring any occurring temporal local deviation in the convec-
tive heat transfer from the reference case and thus provides information about the influence
of the parameters over the whole mixing transient. The results depicted in Figure 10 show
a similar trend to that for Ñu. Therefore, the conclusions from Ñu can be transferred to
the results for N̂u. An important difference exists for the measure σqi , which captures
nonlinear effects. The target function R̂ according to Equation (15) evaluates the enclosed
area between the mixing transients. Hence, nonlinear effects arise in the case of a strongly
nonlinear profile of the transient if it is shifted through a shorter mixing time. In addition,
longer mixing transients are cut off when the mixing time of the reference case is reached,
which also results in nonlinearities. This fact explains the higher values in σqi . This ap-
proach was chosen because the fixed integration interval enables consistent normalization.
An integration interval with the mixing time of the respective case would cause identical
nonlinear effects with no consistent normalization opportunity. Defining a long integration
interval that contains all mixing times has the disadvantage that steady-state values are
taken into account, which are irrelevant for the mixing process and therefore falsify the
results. The evaluation according to Equation (15) has minor drawbacks and therefore
offers a good basis for the evaluation.

The thermal boundary conditions via ϑ, θ, and φ have great impact on the integral
mean global kinetic energy during the mixing process Ẽk, as can be seen in Figure 11a.
The remaining parameters show minor impact. Ẽk also behaves almost linearly when the
parameters are changed, as can be seen in Figure 11c. In contrast to Ẽk, the other parameters
also show noticeable influence for the deviation in kinetic energy from the reference case Êk,
shown in Figure 11b. This is due to the fact that, although the integral mean kinetic energy
Ẽk remains the same by changing these parameters, the mixing time changes relative to the
reference case and this leads to the measured deviation. σqi in Figure 11d correlates to µ∗qi

,
since the target function itself is nonlinear, and consequently, larger change yields greater
associated nonlinearity.
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LES

URANS

LES

URANS

Figure 10. Normalized modified mean µ∗q /Rre f and standard deviation σq/Rre f of the mean absolute

deviation to the reference case of the Nusselt number: (a,e) on the left wall, N̂ule f t; (b,f) on the right
wall, N̂uright; (c,g) on the bottom wall, N̂ubottom; and (d,h) on the top wall, N̂utop.

LES
URANS

Figure 11. Normalized modified mean µ∗q /Rre f and standard deviation σq/Rre f for the responses:

(a,c) for the integral mean global kinetic energy Ẽk and (b,d) for the mean absolute deviation to the
reference case of the global kinetic energy Êk.

The duration of the entire mixing process is measured by the mixing Fourier number
Foε. As can be seen in Figure 12a, the associated modified mean µ∗qi

is greatest for ϑ and
ξ. µ∗qi

has a comparable order of magnitude for the other parameters, but φ and χ have
slightly higher µ∗qi

than θ. In Figure 12d, the nonlinearities or interaction effects are largest
for ϑ, φ, and ξ. When φ is changed, larger interaction behavior or nonlinearities occur with
URANS compared to LES, as can be seen from σqi . In summary, LES and URANS show
comparable sensitivity with regard to the mixing time.

The change in shape or rather the integral mean segregation intensity Ĩ according to
µ∗qi

in Figure 12b is largely determined by χ because the initial distribution of the helium
mole fraction varies. This is reflected in the mixing behavior and the shape of the mixing
transient. The remaining parameters show medium impact, and the shape of the mixing
transient is mostly retained. The conclusions from Foε can largely be applied to the mean
absolute deviation in the segregation intensity Î. ϑ and ξ have the greatest influence, as
they also have the greatest influence on Foε. Hence, the change in these parameters shifts
the mixing transients regarding time and consequently increases Î. The larger values for σqi

in Figure 12f are due to the nonlinearity effects of the target function R̂, which has already
been discussed.
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LES
URANS

Figure 12. Normalized modified mean µ∗q /Rre f and standard deviation σq/Rre f for the responses:

(a,d) for the mixing time Foε, (b,e) for the integral mean segregation intensity Ĩ, and (c,f) for the mean
absolute deviation to the reference case of the segregation intensity Î.

Since a large number of parameters enormously increases the required computing
resources for the investigation of uncertainties, three of the remaining parameters will be
examined further. The mixing Fourier number Foε was selected as the main criterion to
pick the most relevant parameters. The characteristic temperature difference via ϑ has the
greatest importance for the buoyancy-driven mixing process. χ and φ have slightly higher
impact than θ. For this reason, ϑ, χ, and φ were chosen for the uncertainty quantification.
The diffusion coefficient via ξ has also great importance for the mass transfer. For the
application to a binary mixture, however, it is assumed that the diffusion coefficient can be
described sufficiently accurate by a dynamic model and is subject to minor uncertainties.
Therefore, this parameter is also neglected in the following considerations.

3.4. Uncertainty Quantification

Based on the preceding sensitivity analysis in Section 3.3, the propagation of uncertain-
ties in one initial condition, which is represented by the change in the initial mole fraction
difference of the helium stratification through χ, and two thermal boundary conditions,
which are represented by the change in the characteristic temperature difference through ϑ
and the change in the wall tangential temperature gradient through φ, were investigated.

The open-source software Dakota 6.10 [37] was used as the uncertainty quantification
framework. For the evaluation with LES and URANS, non-intrusive Polynomial Chaos
Expansions (PCE) were applied because of the high convergence rate of the stochastic
results with an increasing number of simulation runs. Therefore, very accurate results
can potentially be obtained even with a small number of calculations. The random input
variables Q : Ω → Υ ⊂ Rn are functions that map events ω ∈ Ω from the sample space Ω
to realizations q ∈ Υ. PCE is a spectral method in which random response functions R(ω)
are described by suitable multidimensional orthogonal polynomials Ψj(Q) as a function
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of the random input variables Q. With a sequence {Qi(ω)}∞
i=1 of random variables, the

infinite expansion results in expression Equations (22) and (23) [38,39]:

R(ω) = R(Q) = a0B0 +
∞

∑
i1=1

ai1 B1
(
Qi1
)
+

∞

∑
i1

i1

∑
i2

ai1i2 B2
(
Qi1 ,Qi2

)
+ . . . (22)

R(ω) =
∞

∑
j=0

αjΨj(Q1,Q2, . . .) (23)

RP(ω) =
P

∑
j=0

αjΨj(Q1,Q2, . . . ,Qn) =
P

∑
j=0

αjΨj(Q) (24)

There is a one-to-one correspondence between the PCE coefficients ai1i2 ...in and αj and
between the multidimensional orthogonal polynomials Bn

(
Qi1 ,Qi2 , . . . ,Qin

)
and Ψj(Q).

In Equation (22), each additional set of nested summations designates a collection of
polynomials with increasing order. Term-based indexing in Equation (23) instead of order-
based indexing simplifies the expression. Finally, a limited number of random variables n
and order truncation leads to Equation (24) with P summation terms. According to [39], the
orthogonal polynomials are generated numerically by using Gauss–Wigert [40], discretized
Stieltjes [41], Chebyshev [41], or Gramm–Schmidt [42] approaches. The Gauss points and
weights are computed by the Golub–Welsch [43] tridiagonal eigensolution. This allows
us to define arbitrary probability density functions for the input variables and eliminates
the need to induce additional nonlinearity through variable transformations. The PCE
coefficients αj are estimated here by using spectral projection. The orthogonality property
of the polynomials helps to extract each coefficient. The following expression [38], which
contains the inner product 〈·, ·〉$ on Υ with the weight $Q(q), gives the coefficients by

αj =
1
γj

E
[
R(Q)Ψj(Q)

]
=

1
γj
〈R , Ψj〉$ =

1
γj

∫
Υ

R(q)Ψj(q) $Q(q)dq , (25)

where $Q(q) = ∏n
i=1 $Qi (qi) is the joint probability density (weight) function. The inner

product γj = 〈Ψj, Ψj〉$ can be computed analytically. For solving the multidimensional
integral in Equation (25), the discrete projection, which is also termed pseudospectral,
is applied. The multidimensional integral can be approximated by a tensor product of
one-dimensional quadrature formulas. A one-dimensional quadrature operator with the
level l ∈ N+, the quadrature points qk

l =
[
q1

l , . . . , qKl
l

]
, and a function f ∈ Cα gives the

following expression [38]:

U (1)
l ◦ f (q) =

Kl

∑
k=1

f
(

q k
l

)
wk

l (26)

For the multivariate case n > 1 and a multi-index l = (l1, . . . , ln) ∈ Nn
+ with

|l| = ∑n
i=1 li, the full tensor product quadrature formula results in Equation (27) [38].

Q(n)
l ◦ f (q) =

(
U (1)

l1
⊗ · · · ⊗ U (1)

ln

)
◦ f (q)

=

Kl1

∑
k1=1
· · ·

Kln

∑
kn=1

f
(

qk1
1 , . . . , qkn

n

)(
wk1

l1
⊗ · · · ⊗ wkn

ln

) (27)

However, for evaluation of this full tensor product, a very large number of function
evaluations is required. Therefore, multi-dimensional integration by the Smolyak sparse
grid method [44] according to Equation (28) is performed, which tremendously reduces
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the number of quadrature points while a high accuracy is preserved. The sparse grid
quadrature rule is defined by the following expression [38,39]:

A(m, n) ◦ f (q) = ∑
m+1≤|l|≤m+n

(−1)m+n−|l|
(

n− 1
m + n− |l|

)
·
(
U (1)

l1
⊗ · · · ⊗ U (1)

ln

)
◦ f (q) (28)

The expression before the tensor product is a binomial coefficient, which is defined
as follows: (

n− 1
m + n− |l|

)
=

(n− 1)!
(m + n− |l|)! (|l| −m− 1)!

(29)

The dimension independent maximum sparse grid level m controls the number of
function evaluations and the associated accuracy of the PCE. The PCE is built through
a linear combination of separate tensor polynomial chaos expansions for each underly-
ing tensor quadrature grid [45]. Summation of the expansion terms is conducted with
the Smolyak combinatorial coefficient in Equation (28). This improves accuracy in the
coefficient estimation and preserves the consistency of the PCE [39].

In the present investigation, a sparse grid level m = 2 is considered and closed fully
nested Clenshaw–Curtis points are applied for quadrature. Univariate and bivariate effects
in R are modeled with orthogonal polynomials of highest-order a = 4, resulting from the
PCE construction according to [45]. Therefore, together with the GSA in Section 3.3, which
shows the approximately linear or low nonlinear behavior of R , the results are assumed to
be sufficiently accurate.

For the subsequent uncertainty analysis, a three-dimensional parameter space n = 3
with the parameter vector q sparse grids contains the prioritized parameters in the follow-
ing expression:

q sparse grids = q I =
(
ϑ χ φ

)
(30)

The initial and boundary conditions are often not exactly known and are therefore
subject to uncertainties. Next to the initial conditions, the boundary conditions enable the
unambiguous solution of a partial differential equation regarding space and time. However,
in case of the Navier–Stokes equations, inherent uncertainties in the boundary conditions
arise due to the interaction of turbulent fluctuations with the boundary. For this reason, a
normal distribution for uncertainty in the characteristic temperature difference through
ϑ was defined according to the central limit theorem, which states that many indepen-
dent random effects lead to normal distribution. The uncertainty of the wall tangential
temperature gradient through φ was defined to follow a log-normal distribution, which
also in the course of the central limit theorem represents the distribution that results from
the product of many positive independent random variables. The temperature gradient
represents the temperature profile at the boundary that is established by the counterflow
heat exchanger in the application case and since the supplied heat from the heat exchanger
is always positive, the assumption of a log-normal distribution was made. In addition, the
injection process creates large uncertainties in the actual build-up of helium stratification
due to the turbulent flow of the gas stream through the injection nozzle. Hence, for the
initial condition through χ, a half normal distribution was also assumed because, if the
stratification is stable, the density decreases in the vertical direction. The random variables
for the realizations ϑ, χ, and φ are Γ, Λ, and Φ. The random vector of parameters is
Q = (Γ, Λ, Φ). The standard deviation of Γ and Φ was assumed to be σQ = 0.1. For Λ, the
standard deviation is defined with σQ = 0.2 since a large uncertainty in the structure of
the stratification is assumed. N

(
µ, σ2) and LN

(
µ, σ2) denotes a normal distribution and a

log-normal distribution with expectation µ and variance σ2. T N
(
µ, σ2, a, b

)
denotes a trun-

cated normal distribution with a and b as the lower and upper bounds. The corresponding
probability density functions fQ(q) of the uncertain input parameters are then as follows:
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Γ ∼ N
(

1, 0.12
)

Λ ∼ T N
(

0, 0.22, 0, 1
)

Φ ∼ LN
(

0.1, 0.12
)

(31)

After the propagation of these uncertainties, the probability density functions (PDF)
fR(R), the expansion mean µR = E(R), and the standard deviation σR =

√
var(R) for

LES and URANS were determined. In Appendix B, the first-, second- and total-order Sobol
indices are listed in Tables A3–A5 respectively. Thus, the uncertainties in the responses
can be apportioned to the uncertainties in the input parameters. fR(R) was determined by
sampling on the PCE approximation considering the input probability density functions
fQ(q). The mean µR, standard deviation σR, and Sobol indices were computed analytically
from the PCE coefficients αj.

When comparing the mean values and the standard deviations in Table 3, it is notice-
able that the results for µR and σR largely coincide for LES and URANS. With 〈·〉 and
|·| denoting the mean and absolute value, respectively, the difference can be quantified
in summary by the mean relative deviation of URANS from LES regarding the statistical
moments in Table 3 with

〈∣∣∣µURANS
R − µLES

R

∣∣∣/µLES
R
〉

and
〈∣∣∣σURANS

R − σLES
R

∣∣∣/σLES
R
〉
, which

are 0.055 and 0.092 respectively. From this, good agreement of both approaches becomes
visible. However, when considering the probability density functions, correspondence
and deviations between LES and URANS become clear in more detail. A part of the
interpretation of the results is based on the fact that, if the first-order Sobol index Sqi

is large with respect to an input variable and the response function additionally shows
linear behavior regarding this parameter, then the result variable approximately shows
a similar distribution type IQ, as defined for the input variable. Considering the affine
model for the approximation of a single response (Equation (32)), for which the variance
is predominantly determined by one input variable, the shape of the probability density
function after propagation remains approximately the same whereas the expectation and
variance change. From this, conclusions can be made and the plausibility of the results can
be checked.

R ≈ AQ+ B ∼ IQ
(

AµQ + B, A2σ2
Q

)
(32)

Table 3. Expansion mean µR and standard deviation σR for the random response R.

LES URANS
R µR σR µR σR

Ñule f t 47.7100 2.4600 48.6900 2.3070
Ñuright −47.7800 2.2790 −48.6900 2.1500
Ñubottom 14.9900 2.2560 15.2400 2.3140
Ñutop −9.5170 2.2030 −9.9850 2.1100
N̂ule f t 5.2100 2.4790 4.6910 2.1640
N̂uright 4.2710 2.2060 4.1000 1.8390
N̂ubottom 15.3600 2.2520 15.5400 2.3200
N̂utop 9.5870 2.1930 10.0400 2.1270
Ẽk 4.7310× 10−4 6.9620× 10−5 4.2430× 10−4 5.4710× 10−5

Êk 1.2910× 10−4 8.2110× 10−5 1.0430× 10−4 5.9700× 10−5

Foε 0.0579 0.0054 0.0606 0.0062
Ĩ 0.4263 0.0118 0.4482 0.0118
Î 0.0444 0.0304 0.0451 0.0302

Starting with Ñule f t and Ñuright in Figure 13a,b, it is noticeable that the shape of
the PDF is similar to a normal distribution. This is the case because the variance is
predominantly caused by the temperature specification at the left and right walls via ϑ, as
can be seen from the first-order Sobol indices Sqi in Table A3, and shows a nearly linear
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behavior that becomes visible due to the low interaction behavior through the second-order
Sobol indices Sqiqj in Table A4 and a low σqi in Figure 9e,f. The distribution for Ñubottom
tends towards a log-normal distribution. As can be seen in Table A3, the variance is
predominantly determined by the wall-tangential temperature gradient via φ, which was
specified with a log-normal distribution. For this reason, a similar distribution for the
result originates. For Ñutop, the effects of χ also become visible. Increasing χ enlarges the
amount of helium at the top wall. Due to the lower density of helium, this attenuates the
erosion at the top wall. This results in a lower convective heat transfer in this region. This
creates the superimposed distribution based on the effects of φ and χ, shown in Figure 13d.
When comparing LES and URANS, the probability density distributions in Figure 13 and
the statistical moments in Table 3 are in very good agreement. If taking LES as a reliable
reference, the absolute value of the Nusselt number for URANS is slightly overestimated
on the left, right, and top walls.

LES
URANS

Figure 13. Probability density functions for the integral mean Nusselt number: (a) on the left wall,
Ñule f t; (b) on the right wall, Ñuright; (c) on the bottom wall, Ñubottom; and (d) on the top wall, Ñutop.

The distributions for N̂ule f t and N̂uright in Figure 14a,b, approximately resemble the
shape of a chi-distribution because the response function evaluates the absolute difference
between the mixing transients. Analogous to Ñu, the variance primarily arises through the
variance in the temperature at the left and right walls, which is normally distributed and
dominates the distribution of the response. This can be seen in Table A3 by means of the
first-order Sobol indices Sqi . The distributions of URANS and LES are in good agreement.
The distributions for the top and bottom walls in Figures 13c,d and 14c,d are nearly the
same as that for Ñu because the top and bottom walls are adiabatic for the reference case,
and this results in the integral deviation from the abscissa.

LES
URANS

Figure 14. Probability density functions for the mean absolute deviation to the reference case of the
Nusselt number: (a) on the left wall, N̂ule f t; (b) on the right wall, N̂uright; (c) on the bottom wall,
N̂ubottom; and (d) on the top wall, N̂utop.

In Figure 15a, a normal distribution also arises for the PDF of Ẽk, as again the temper-
ature on the left and right walls via ϑ causes the major variance, as can be seen with Sqi in
Table A3. The global kinetic energy Ẽk is underestimated with URANS and leads to longer
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mixing times Foε in Figure 16a since the mixing process is dominated by the arising natural
convection. The distribution for LES is wider than for URANS because LES captures most
of the turbulent structures. The larger amount of the standard deviation also explains the
larger deviation from the reference case Êk for LES in Figure 15b. By taking the LES as
reference, the results for Êk indicate that URANS is able to predict the variability of Ek at
Ra = 2× 109 due to the parameter uncertainties.

LES

URANS

Figure 15. Probability density functions for the random responses: (a) integral mean global kinetic
energy Ẽk and (b) mean absolute deviation to the reference case of the global kinetic energy Êk.

In Figure 16a, the shape of the PDF for Foε resembles a normal distribution due to the
large influence of ϑ for both LES and URANS, as can be seen with Sqi in Table A3. Low
values for σqi in Figure 12d and Sqiqj in Table A4 indicate the approximately linear behavior
of Foε. In comparison to URANS, LES predicts shorter mixing times and causes a smaller
width of the distribution, which also can be measured by the smaller mean value µR and
standard deviation σR in Table 3. The distributions for Ĩ in Figure 16b tend towards larger
values, as can be seen especially for the LES results. This tendency arises from the truncated
normal distribution for the linear stratification parameter χ, which increases the segregation
intensity and causes the largest proportion of variance, as indicated by Sqi in Table A3.
The variance component including the smaller values mainly arises from the remaining
parameters ϑ and φ. In contrast to the larger integral mean µR of the segregation intensity
Ĩ in URANS, the results indicate that LES has a higher mixing intensity M̃ whereas the
width of the distributions is almost identical. The shorter mixing time measured by Foε for
LES and the clear difference in Ĩ between LES and URANS arises since the more resolved
convection in LES, which might not be represented sufficiently accurate by the turbulence
model in URANS, results in a more accurate prediction of mass transfer, since anisotropic
large-scale eddies have a large influence on the mixing process. The deviation from the
reference case Î, which provides a good measure for the variability of the results when the
parameters change, shows very good agreement between LES and URANS.

LES
URANS

Figure 16. Probability density functions for the random responses: (a) mixing time Foε, (b) integral
mean segregation intensity Ĩ, and (c) mean absolute deviation to the reference case of the segregation
intensity Î.
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4. Conclusions

In this paper, a methodology for the assessment of uncertainties of Large Eddy Simula-
tion (LES) and Unsteady Reynolds-Averaged Navier–Stokes (URANS) for the buoyancy-driven
mixing process between two miscible fluids at Ra = 2× 109 was presented, starting from
the preceding mesh convergence study and sensitivity analysis to the actual uncertainty
quantification. For this purpose, an initial stratification with 40 vol% helium was defined
in the upper third of the Differentially Heated Cavity (DHC) in addition to air. From the
investigation, the parameters that have significant influence on the mixing process were
identified and it was found that there is good agreement between LES and URANS for
Ra = 2× 109 regarding the final stochastic results.

The mesh convergence study provides an approach for meshing the fluid domain
by means of linear expansion factors, which allows for systematic determination of the
required wall normal resolution with the number of cells in the boundary layer nδu/ip and
nδT/grad and the required wall tangential resolution with the dimensionless cell widths ∆x+‖
and ∆y+‖ , which can be transferred to other engineering applications underlying similar
physics. The applied convergence criteria MAE

LES , DNS
(avg(Nu))/〈avg(NuDNS)〉y ≤ εMAE ≈

10−2 containing the relative mean average error (MAE) between the results for the local
Nusselt number received from LES and DNS ensures sufficiently accurate reflection of
the global characteristics. This condition is fulfilled from a wall tangential resolution of
∆x+‖ , ∆y+‖ = 30 and boundary layer resolution of nδu/ip = 7.87 and nδT/grad = 10.10.

As a prelimary step for the uncertainty analysis, the number of relevant parameters
was reduced by using a one-at-a-time (OAT-) method, in which all parameters were varied
step by step starting from an initial point. It was found that the thermal boundary condi-
tions, such as the temperature of the enclosing walls and the wall tangential temperature
gradient at the vertical walls, are of essential importance, as the mixing process is primarily
driven by buoyancy effects. In addition, the initial build-up of the helium stratification
shows significant influence on the mixing process. Additionally, the diffusion coefficient
for mass transfer causes large changes. Therefore, these parameters were examined in
more detail by global sensitivity analysis using the Morris method to show more precise
statements about the sensitivity of the response function to the different parameters and
possible nonlinear effects or interaction behavior. In summary, it can be seen that the sensi-
tivity behavior of LES and URANS is qualitatively comparable with moderate quantitative
deviations at Ra = 2× 109.

The propagtion of the uncertainty in selected parameters was eventually investi-
gated with Polynomial Chaos Expansions (PCE). For the determination of the expansion-
coefficients, the spectral projection approach was applied. The multi-dimensional integra-
tion was conducted by the Smolyak sparse grid method. The probability density functions
(PDF) and Sobol indices elucidate slight differences between LES and URANS. The heat
transfer, which is measured by the Nusselt number, is well predicted with URANS in
comparison to LES. However, the global kinetic energy and associated convective mass
transport shows differences between LES and URANS. This results in different mixing
times and mixing intensity. If LES can be regarded as a suitable reference, URANS with the
currently used turbulence model predicts a slightly incorrect mixing behavior and small
deviations in the LES for the variability of the result variables exist. The deviations are
probably caused by the greater limitation of degrees of freedom of the URANS equations,
which complicates the accurate prediction of internal buoyancy-driven mixing processes.
Turbulence has a decisive influence on the mass transport and deviations directly imply
effects on the natural convection flow. According to Section 3.4, the mean relative deviation
between LES and URANS for the statistical moments is small. While the PDFs indicate
that discernable differences arise between the uncertainty analysis based on URANS and
LES, there is still reasonable agreement in most of the statistical moments. In summary,
the resource-efficient URANS is suitable as a lower-fidelity model for the prediction of the
input uncertainties propagation at Ra = 2× 109 for the investigated mixing process based
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on the reference analysis conducted with LES. Future work will extend the investigations
to higher Rayleigh numbers comparable to the THAI application as well as the THAI
large-scale facility itself.
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Appendix A. Parameters for Case Definition

Additional parameters regarding the thermophysical properties of the fluids under
consideration as well as the physical and numerical discretization parameters are listed in
Tables A1 and A2, respectively.

Table A1. Applied material properties of air and helium.

Gas Mole Weight M Isobaric Heat
Capacity Cp

Dynamic
Viscosity µ

Prandtl
Number Pr

air [28] 28.96 g mol−1 1006.5 J K−1 1.845× 10−5 Pa s 0.707
helium [46] 4.0 g mol−1 5193 J K−1 1.985× 10−5 Pa s 0.664

Table A2. Physical and spatial discretization parameters.

Ra Nx Ny Nz
∆xc
∆x+

∆yc
∆y+ ϕW D

2× 109 44 220 34 24.439 9.209 1.0

Appendix B. Results for the Variance-Based Decomposition

Complementing the results presented in Section 3.4 for the uncertainty quantification,
the corresponding first-, second-, and total-oder Sobol indices are listed in Tables A3–A5,
respectively. This gives insight into how uncertainties in the responses are apportioned to
the uncertainties in the input parameters. The Sobol indices [38] are defined as

Sqi =
Di
D

=
var[E(R|qi)]

var(R)
,

Sqiqj =
Dij

D
=

var
[
E
(
R|qi, qj

)]
− var[E(R|qi)]− var

[
E
(
R|qj

)]
var(R)

,

STqi
= 1− var[E(R|q∼i)]

var(R)
=

E[var(R|q∼i)]

var(R)
,

where D, Di, and Dij are the total and partial variances in the response R. The notation
q∼i = [q1, . . . , qi−1, qi+1, . . . , qn] denotes the parameter vector having all components of q
except those in the set i.
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Table A3. First-order Sobol indices Sqi for the random response R.

LES URANS
R Sϑ Sχ Sφ Sϑ Sχ Sφ

Ñule f t 0.8550 0.1083 0.0359 0.8392 0.1161 0.0441
Ñuright 0.8786 0.0473 0.0734 0.8471 0.0543 0.0978
Ñubottom 0.0310 7.4810× 10−4 0.9676 0.0319 1.8460× 10−4 0.9673
Ñutop 0.0649 0.2382 0.6948 0.0558 0.2254 0.7175
N̂ule f t 0.7741 0.1619 0.0048 0.7301 0.2086 0.0032
N̂uright 0.7979 0.1106 0.0049 0.7179 0.1657 0.0050
N̂ubottom 0.0213 0.0012 0.9768 0.0308 2.4910× 10−4 0.9684
N̂utop 0.1896 0.2295 0.5723 0.1962 0.2242 0.5736
Ẽk 0.9454 0.0023 0.0493 0.9788 3.3030× 10−4 0.0201
Êk 0.8612 0.0147 0.0115 0.8508 0.0258 0.0067
Foε 0.8940 0.0343 0.0702 0.9027 0.0348 0.0624
Ĩ 0.0061 0.9094 0.0771 0.1270 0.7063 0.1624
Î 0.6429 0.2137 0.0238 0.6275 0.2420 0.0190

Table A4. Second-order Sobol indices Sqiqj for the random response R.

LES URANS
R Sϑχ Sϑφ Sχφ Sϑχ Sϑφ Sχφ

Ñule f t 5.3040× 10−4 2.5950× 10−4 4.6230× 10−5 0.0252 4.4470× 10−4 9.5290× 10−4

Ñuright 4.2520× 10−4 6.0350× 10−4 8.2280× 10−5 0.0275 4.9870× 10−4 0.0010
Ñubottom 4.2090× 10−5 0.0011 8.2600× 10−5 4.1120× 10−5 0.0010 6.7580× 10−6

Ñutop 0.0010 2.6460× 10−4 2.8610× 10−4 0.0168 4.9460× 10−4 9.8280× 10−4

N̂ule f t 0.0581 0.0016 0.0013 0.0861 0.0013 0.0025
N̂uright 0.1028 0.0044 0.0046 0.1345 0.0043 0.0112
N̂ubottom 3.4510× 10−5 0.0014 6.8360× 10−5 2.3570× 10−4 9.5770× 10−4 3.6120× 10−5

N̂utop 0.0011 0.0017 0.0052 0.0288 0.0052 0.0086
Ẽk 1.6030× 10−4 0.0023 3.8430× 10−5 0.0604 0.0153 0.0036
Êk 0.0635 0.0663 4.6140× 10−4 0.0796 0.0207 0.0258
Foε 3.3040× 10−4 5.0210× 10−4 1.0890× 10−4 0.1769 0.0053 0.0101
Ĩ 0.0028 0.0042 0.0017 0.0912 0.0070 0.0052
Î 0.0991 0.0233 8.1460× 10−4 0.1743 0.0052 0.0193

Table A5. Total-order Sobol indices STqi
for the random response R.

LES URANS
R STϑ

STχ STφ STϑ
STχ STφ

Ñule f t 0.8557 0.1088 0.0362 0.8398 0.1164 0.0445
Ñuright 0.8792 0.0476 0.0738 0.8479 0.0545 0.0984
Ñubottom 0.0316 8.0080× 10−4 0.9682 0.0326 1.9480× 10−4 0.9679
Ñutop 0.0664 0.2399 0.6958 0.0569 0.2263 0.7182
N̂ule f t 0.8326 0.2201 0.0067 0.7864 0.2657 0.0060
N̂uright 0.8791 0.1935 0.0140 0.8159 0.2725 0.0231
N̂ubottom 0.0220 0.0013 0.9775 0.0313 2.6020× 10−4 0.9689
N̂utop 0.1946 0.2365 0.5776 0.1999 0.2293 0.5768
Ẽk 0.9481 0.0028 0.0520 0.9795 4.0750× 10−4 0.0209
Êk 0.9730 0.0737 0.0659 0.9664 0.0819 0.0684
Foε 0.8953 0.0353 0.0708 0.9028 0.0349 0.0624
Ĩ 0.0113 0.9156 0.0804 0.1312 0.7095 0.1637
Î 0.7622 0.3171 0.0403 0.7389 0.3337 0.0388
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