000894830 001__ 894830
000894830 005__ 20240712084622.0
000894830 0247_ $$2doi$$a10.1016/j.applthermaleng.2021.116546
000894830 0247_ $$2ISSN$$a1359-4311
000894830 0247_ $$2ISSN$$a1873-5606
000894830 0247_ $$2Handle$$a2128/30877
000894830 0247_ $$2WOS$$aWOS:000635626600009
000894830 037__ $$aFZJ-2021-03414
000894830 082__ $$a690
000894830 1001_ $$00000-0003-1334-6855$$aVijaya Kumar, G.$$b0
000894830 245__ $$aImplementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures
000894830 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000894830 3367_ $$2DRIVER$$aarticle
000894830 3367_ $$2DataCite$$aOutput Types/Journal article
000894830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648195983_28151
000894830 3367_ $$2BibTeX$$aARTICLE
000894830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894830 3367_ $$00$$2EndNote$$aJournal Article
000894830 520__ $$aIn this paper, we discuss a CFD model to predict vapor condensation on walls in the presence of non-condensable gases, with a specific focus on large scale applications, such as accidental flows in a nuclear reactor containment. It is conclusive from the previous works that the heat and mass transport resistance due to the diffusion boundary layer in the gas phase overwhelms the liquid film thermal resistance. Therefore, the two-phase wall condensation phenomenon is treated with a single-phase (gas) model. For the numerical implementation, the containmentFOAM CFD package, based on OpenFOAM is used. For the first time, the model implementation is discussed for arbitrary multi-component mixtures, and performances of two commonly used approaches – Volumetric source terms and Face-fluxes – are compared; the Face-flux model proved to be more accurate, computationally cheaper, and less grid-dependent. Concluding, the Face-flux approach was validated against the experimental database for forced convection flows, obtained at the SETCOM facility in Forschungzentrum Jülich, Germany. The results demonstrate the model’s predictiveness and robustness for a wide range of cases in the forced convection regime.
000894830 536__ $$0G:(DE-HGF)POF4-1422$$a1422 - Beyond Design Basis Accidents and Emergency Management (POF4-142)$$cPOF4-142$$fPOF IV$$x0
000894830 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894830 7001_ $$0P:(DE-Juel1)178896$$aCammiade, Liam M. F.$$b1
000894830 7001_ $$0P:(DE-Juel1)130361$$aKelm, Stephan$$b2$$eCorresponding author
000894830 7001_ $$0P:(DE-HGF)0$$aArul Prakash, K.$$b3
000894830 7001_ $$0P:(DE-Juel1)179594$$aGroß, Eva M.$$b4
000894830 7001_ $$0P:(DE-Juel1)130314$$aAllelein, Hans-Josef$$b5
000894830 7001_ $$0P:(DE-HGF)0$$aKneer, Reinhold$$b6
000894830 7001_ $$0P:(DE-HGF)0$$aRohlfs, Wilko$$b7
000894830 773__ $$0PERI:(DE-600)2019322-1$$a10.1016/j.applthermaleng.2021.116546$$gVol. 187, p. 116546 -$$p116546 -$$tApplied thermal engineering$$v187$$x1359-4311$$y2021
000894830 8564_ $$uhttps://juser.fz-juelich.de/record/894830/files/ATE_WallCondensationPaper_Review_1_Full_Manuscript.pdf$$yOpenAccess
000894830 909CO $$ooai:juser.fz-juelich.de:894830$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894830 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178896$$aForschungszentrum Jülich$$b1$$kFZJ
000894830 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130361$$aForschungszentrum Jülich$$b2$$kFZJ
000894830 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179594$$aForschungszentrum Jülich$$b4$$kFZJ
000894830 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130314$$aForschungszentrum Jülich$$b5$$kFZJ
000894830 9131_ $$0G:(DE-HGF)POF4-142$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1422$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vSicherheit von Kernreaktoren$$x0
000894830 9141_ $$y2021
000894830 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL THERM ENG : 2019$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894830 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000894830 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000894830 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000894830 920__ $$lyes
000894830 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000894830 9801_ $$aFullTexts
000894830 980__ $$ajournal
000894830 980__ $$aVDB
000894830 980__ $$aUNRESTRICTED
000894830 980__ $$aI:(DE-Juel1)IEK-6-20101013
000894830 981__ $$aI:(DE-Juel1)IFN-2-20101013