001     894830
005     20240712084622.0
024 7 _ |a 10.1016/j.applthermaleng.2021.116546
|2 doi
024 7 _ |a 1359-4311
|2 ISSN
024 7 _ |a 1873-5606
|2 ISSN
024 7 _ |a 2128/30877
|2 Handle
024 7 _ |a WOS:000635626600009
|2 WOS
037 _ _ |a FZJ-2021-03414
082 _ _ |a 690
100 1 _ |a Vijaya Kumar, G.
|0 0000-0003-1334-6855
|b 0
245 _ _ |a Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648195983_28151
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we discuss a CFD model to predict vapor condensation on walls in the presence of non-condensable gases, with a specific focus on large scale applications, such as accidental flows in a nuclear reactor containment. It is conclusive from the previous works that the heat and mass transport resistance due to the diffusion boundary layer in the gas phase overwhelms the liquid film thermal resistance. Therefore, the two-phase wall condensation phenomenon is treated with a single-phase (gas) model. For the numerical implementation, the containmentFOAM CFD package, based on OpenFOAM is used. For the first time, the model implementation is discussed for arbitrary multi-component mixtures, and performances of two commonly used approaches – Volumetric source terms and Face-fluxes – are compared; the Face-flux model proved to be more accurate, computationally cheaper, and less grid-dependent. Concluding, the Face-flux approach was validated against the experimental database for forced convection flows, obtained at the SETCOM facility in Forschungzentrum Jülich, Germany. The results demonstrate the model’s predictiveness and robustness for a wide range of cases in the forced convection regime.
536 _ _ |a 1422 - Beyond Design Basis Accidents and Emergency Management (POF4-142)
|0 G:(DE-HGF)POF4-1422
|c POF4-142
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cammiade, Liam M. F.
|0 P:(DE-Juel1)178896
|b 1
700 1 _ |a Kelm, Stephan
|0 P:(DE-Juel1)130361
|b 2
|e Corresponding author
700 1 _ |a Arul Prakash, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Groß, Eva M.
|0 P:(DE-Juel1)179594
|b 4
700 1 _ |a Allelein, Hans-Josef
|0 P:(DE-Juel1)130314
|b 5
700 1 _ |a Kneer, Reinhold
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rohlfs, Wilko
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.applthermaleng.2021.116546
|g Vol. 187, p. 116546 -
|0 PERI:(DE-600)2019322-1
|p 116546 -
|t Applied thermal engineering
|v 187
|y 2021
|x 1359-4311
856 4 _ |u https://juser.fz-juelich.de/record/894830/files/ATE_WallCondensationPaper_Review_1_Full_Manuscript.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894830
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178896
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130314
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-142
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Sicherheit von Kernreaktoren
|9 G:(DE-HGF)POF4-1422
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL THERM ENG : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21