000894837 001__ 894837
000894837 005__ 20220930130325.0
000894837 0247_ $$2doi$$a10.1038/s41598-021-96342-3
000894837 0247_ $$2Handle$$a2128/28644
000894837 0247_ $$2altmetric$$aaltmetric:112035039
000894837 0247_ $$2pmid$$apmid:34413412
000894837 0247_ $$2WOS$$aWOS:000686768700076
000894837 037__ $$aFZJ-2021-03421
000894837 082__ $$a600
000894837 1001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b0$$eCorresponding author
000894837 245__ $$aA machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
000894837 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2021
000894837 3367_ $$2DRIVER$$aarticle
000894837 3367_ $$2DataCite$$aOutput Types/Journal article
000894837 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631623948_991
000894837 3367_ $$2BibTeX$$aARTICLE
000894837 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894837 3367_ $$00$$2EndNote$$aJournal Article
000894837 520__ $$aWhile a replicability crisis has shaken psychological sciences, the replicability of multivariate approaches for psychometric data factorization has received little attention. In particular, Exploratory Factor Analysis (EFA) is frequently promoted as the gold standard in psychological sciences. However, the application of EFA to executive functioning, a core concept in psychology and cognitive neuroscience, has led to divergent conceptual models. This heterogeneity severely limits the generalizability and replicability of findings. To tackle this issue, in this study, we propose to capitalize on a machine learning approach, OPNMF (Orthonormal Projective Non-Negative Factorization), and leverage internal cross-validation to promote generalizability to an independent dataset. We examined its application on the scores of 334 adults at the Delis-Kaplan Executive Function System (D-KEFS), while comparing to standard EFA and Principal Component Analysis (PCA). We further evaluated the replicability of the derived factorization across specific gender and age subsamples. Overall, OPNMF and PCA both converge towards a two-factor model as the best data-fit model. The derived factorization suggests a division between low-level and high-level executive functioning measures, a model further supported in subsamples. In contrast, EFA, highlighted a five-factor model which reflects the segregation of the D-KEFS battery into its main tasks while still clustering higher-level tasks together. However, this model was poorly supported in the subsamples. Thus, the parsimonious two-factors model revealed by OPNMF encompasses the more complex factorization yielded by EFA while enjoying higher generalizability. Hence, OPNMF provides a conceptually meaningful, technically robust, and generalizable factorization for psychometric tools.
000894837 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000894837 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894837 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S. B.$$b1
000894837 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b2$$ufzj
000894837 7001_ $$0P:(DE-Juel1)171414$$aChen, Ji$$b3$$ufzj
000894837 7001_ $$0P:(DE-Juel1)172863$$aAmunts, J.$$b4$$ufzj
000894837 7001_ $$0P:(DE-HGF)0$$aSotiras, A.$$b5
000894837 7001_ $$0P:(DE-Juel1)161225$$aGenon, S.$$b6
000894837 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-021-96342-3$$gVol. 11, no. 1, p. 16896$$n1$$p16896$$tScientific reports$$v11$$x2045-2322$$y2021
000894837 8564_ $$uhttps://juser.fz-juelich.de/record/894837/files/Manuscript.pdf$$yOpenAccess
000894837 8564_ $$uhttps://juser.fz-juelich.de/record/894837/files/s41598-021-96342-3.pdf$$yOpenAccess
000894837 8767_ $$8SN-2021-00708-b$$92021-12-02$$d2021-12-07$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr.: 1200174041
000894837 909CO $$ooai:juser.fz-juelich.de:894837$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000894837 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b0$$kFZJ
000894837 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000894837 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b2$$kFZJ
000894837 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171414$$aForschungszentrum Jülich$$b3$$kFZJ
000894837 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172863$$aForschungszentrum Jülich$$b4$$kFZJ
000894837 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b6$$kFZJ
000894837 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000894837 9141_ $$y2021
000894837 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894837 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2019$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894837 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000894837 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000894837 920__ $$lyes
000894837 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000894837 9801_ $$aFullTexts
000894837 980__ $$ajournal
000894837 980__ $$aVDB
000894837 980__ $$aUNRESTRICTED
000894837 980__ $$aI:(DE-Juel1)INM-7-20090406
000894837 980__ $$aAPC