| Home > Publications database > Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5 > print |
| 001 | 894854 | ||
| 005 | 20230815122843.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-021-25574-8 |2 doi |
| 024 | 7 | _ | |a 2128/28628 |2 Handle |
| 024 | 7 | _ | |a altmetric:112968806 |2 altmetric |
| 024 | 7 | _ | |a pmid:34489436 |2 pmid |
| 024 | 7 | _ | |a WOS:000694666900027 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-03425 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Harris, Andrzej |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5 |
| 260 | _ | _ | |a [London] |c 2021 |b Nature Publishing Group UK |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1631540826_15961 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Pdr5, a member of the extensive ABC transporter superfamily, is representative of a clinically relevant subgroup involved in pleiotropic drug resistance. Pdr5 and its homologues drive drug efflux through uncoupled hydrolysis of nucleotides, enabling organisms such as baker’s yeast and pathogenic fungi to survive in the presence of chemically diverse antifungal agents. Here, we present the molecular structure of Pdr5 solved with single particle cryo-EM, revealing details of an ATP-driven conformational cycle, which mechanically drives drug translocation through an amphipathic channel, and a clamping switch within a conserved linker loop that acts as a nucleotide sensor. One half of the transporter remains nearly invariant throughout the cycle, while its partner undergoes changes that are transmitted across inter-domain interfaces to support a peristaltic motion of the pumped molecule. The efflux model proposed here rationalises the pleiotropic impact of Pdr5 and opens new avenues for the development of effective antifungal compounds. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |x 0 |f POF IV |
| 536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |x 1 |f POF IV |
| 536 | _ | _ | |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) |0 G:(DE-HGF)POF4-2172 |c POF4-217 |x 2 |f POF IV |
| 536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20200501) |0 G:(DE-Juel1)hkf7_20200501 |c hkf7_20200501 |x 3 |f Forschergruppe Gohlke |
| 536 | _ | _ | |a DFG project 417919780 - Zentrum für strukturelle Studien |0 G:(GEPRIS)417919780 |c 417919780 |x 4 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Wagner, Manuel |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Du, Dijun |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Raschka, Stefanie |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Nentwig, Lea-Marie |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 5 |
| 700 | 1 | _ | |a Smits, Sander H. J. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Luisi, Ben F. |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
| 700 | 1 | _ | |a Schmitt, Lutz |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41467-021-25574-8 |g Vol. 12, no. 1, p. 5254 |0 PERI:(DE-600)2553671-0 |n 1 |p 5254 |t Nature Communications |v 12 |y 2021 |x 2041-1723 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/894854/files/s41467-021-25574-8.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:894854 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172663 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2172 |x 2 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-02 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-02 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-02 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-02 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-4-20200403 |k IBG-4 |l Bioinformatik |x 3 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-4-20200403 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|