000894866 001__ 894866
000894866 005__ 20220930130326.0
000894866 0247_ $$2doi$$a10.1088/1361-6560/ac1ca0
000894866 0247_ $$2ISSN$$a0031-9155
000894866 0247_ $$2ISSN$$a1361-6560
000894866 0247_ $$2Handle$$a2128/28613
000894866 0247_ $$2pmid$$a34380125
000894866 0247_ $$2WOS$$aWOS:000693956100001
000894866 037__ $$aFZJ-2021-03437
000894866 082__ $$a530
000894866 1001_ $$0P:(DE-Juel1)131791$$aScheins, J. J.$$b0$$eCorresponding author
000894866 245__ $$aHigh-throughput, accurate Monte Carlo simulation on CPU hardware for PET applications
000894866 260__ $$aBristol$$bIOP Publ.$$c2021
000894866 3367_ $$2DRIVER$$aarticle
000894866 3367_ $$2DataCite$$aOutput Types/Journal article
000894866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631105293_29609
000894866 3367_ $$2BibTeX$$aARTICLE
000894866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894866 3367_ $$00$$2EndNote$$aJournal Article
000894866 520__ $$aMonte Carlo simulations (MCS) represent a fundamental approach to modelling the photon interactions in positron emission tomography (PET). A variety of PET-dedicated MCS tools are available to assist and improve PET imaging applications. Of these, GATE has evolved into one of the most popular software for PET MCS because of its accuracy and flexibility. However, simulations are extremely time-consuming. The use of graphics processing units (GPU) has been proposed as a solution to this, with reported acceleration factors about 400–800. These factors refer to GATE benchmarks performed on a single CPU core. Consequently, CPU-based MCS can also be easily accelerated by one order of magnitude or beyond when exploiting multi-threading on powerful CPUs. Thus, CPU-based implementations become competitive when further optimisations can be achieved. In this context, we have developed a novel, CPU-based software called the PET physics simulator (PPS), which combines several efficient methods to significantly boost the performance. PPS flexibly applies GEANT4 cross-sections as a pre-calculated database, thus obtaining results equivalent to GATE. This is demonstrated for an elaborated PET scanner with 3-layer block detectors. All code optimisations yield an acceleration factor of ≈20 (single core). Multi-threading on a high-end CPU workstation (96 cores) further accelerates the PPS by a factor of 80. This results in a total speed-up factor of ≈1600, which outperforms comparable GPU-based MCS by a factor of ≳2. Optionally, the proposed method of coincidence multiplexing can further enhance the throughput by an additional factor of ≈15. The combination of all optimisations corresponds to an acceleration factor of ≈24 000. In this way, the PPS can simulate complex PET detector systems with an effective throughput of 106 photon pairs in less than 10 milliseconds.
000894866 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000894866 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894866 7001_ $$0P:(DE-Juel1)188861$$aLenz, Matthias$$b1
000894866 7001_ $$0P:(DE-Juel1)131667$$aPietrzyk, U.$$b2
000894866 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3
000894866 7001_ $$0P:(DE-Juel1)164254$$aLerche, C.$$b4$$eCorresponding author
000894866 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ac1ca0$$gVol. 66, no. 18, p. 185001 -$$n18$$p185001 -$$tPhysics in medicine and biology$$v66$$x1361-6560$$y2021
000894866 8564_ $$uhttps://juser.fz-juelich.de/record/894866/files/Scheins_2021_Phys._Med._Biol._66_185001.pdf$$yOpenAccess
000894866 8767_ $$d2021-12-27$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP
000894866 909CO $$ooai:juser.fz-juelich.de:894866$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000894866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b0$$kFZJ
000894866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188861$$aForschungszentrum Jülich$$b1$$kFZJ
000894866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000894866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b4$$kFZJ
000894866 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000894866 9141_ $$y2021
000894866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2019$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894866 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000894866 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000894866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000894866 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894866 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000894866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000894866 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000894866 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000894866 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000894866 9801_ $$aFullTexts
000894866 980__ $$ajournal
000894866 980__ $$aVDB
000894866 980__ $$aUNRESTRICTED
000894866 980__ $$aI:(DE-Juel1)INM-4-20090406
000894866 980__ $$aI:(DE-Juel1)INM-11-20170113
000894866 980__ $$aI:(DE-Juel1)VDB1046
000894866 980__ $$aAPC