000894879 001__ 894879
000894879 005__ 20230127125339.0
000894879 0247_ $$2doi$$a10.1109/TGRS.2021.3107451
000894879 0247_ $$2ISSN$$a0018-9413
000894879 0247_ $$2ISSN$$a0196-2892
000894879 0247_ $$2ISSN$$a1558-0644
000894879 0247_ $$2Handle$$a2128/30632
000894879 0247_ $$2altmetric$$aaltmetric:113062269
000894879 0247_ $$2WOS$$aWOS:000732750600001
000894879 037__ $$aFZJ-2021-03450
000894879 082__ $$a620
000894879 1001_ $$0P:(DE-Juel1)166264$$aMozaffari, Amirpasha$$b0$$eCorresponding author$$ufzj
000894879 245__ $$a3-D Electromagnetic Modeling Explains Apparent-Velocity Increase in Crosshole GPR Data-Borehole Fluid Effect Correction Method Enables to Incorporating High-Angle Traveltime Data
000894879 260__ $$aNew York, NY$$bIEEE$$c2022
000894879 3367_ $$2DRIVER$$aarticle
000894879 3367_ $$2DataCite$$aOutput Types/Journal article
000894879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643695694_23481
000894879 3367_ $$2BibTeX$$aARTICLE
000894879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894879 3367_ $$00$$2EndNote$$aJournal Article
000894879 520__ $$aFor high-resolution crosshole ground-penetrating radar (GPR) tomography, a wide-range of ray path angles are required, including transmitter-receiver pairs with high-angles. However, artefacts have been observed in the inverted GPR tomograms when high-angle data were incorporated in ray-based inversion (RBI) tomography, due to not well-understood increasing apparent velocities for increasing ray-angles. To reduce these artefacts, it is common practice to limit the angular aperture to a threshold between 30° to 50°, which reduces the spatial resolution. We apply 3D finite-difference time-domain GPR modelling including borehole fluid and resistive loaded finite-length antenna models to study the increase of apparent velocity with increasing ray path angle. This study shows that the strong refraction of the electromagnetic waves at the borehole interface between water and subsurface is one of the reasons for these not well-understood phenomena. We introduce a novel borehole-fluid effect correction (BFEC) that relocates the transmitter and receiver positions to the location where the refraction is occurring to remove any influence of the borehole such that the remaining traveltimes can be inverted using an RBI. BFEC improves the estimated apparent-velocity (relative permittivity) values and enables the incorporation of wide-angle ray paths resulting in more accurate tomograms. We verify the BFEC for a homogenous and realistic synthetic model. By applying curved-ray RBI without and with the BFEC, the subsurface structures are reconstructed with more details for the BFEC data and average relative error model reduced from 13% to under 9% for the high-resolution inhomogeneous model.
000894879 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000894879 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000894879 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x2
000894879 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894879 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$ufzj
000894879 7001_ $$0P:(DE-Juel1)169315$$aZhou, Zhen$$b2$$ufzj
000894879 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000894879 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b4$$ufzj
000894879 773__ $$0PERI:(DE-600)2027520-1$$a10.1109/TGRS.2021.3107451$$gp. 1 - 10$$p1 - 10, Art no. 5905710$$tIEEE transactions on geoscience and remote sensing$$v60$$x0018-9413$$y2022
000894879 8564_ $$uhttps://juser.fz-juelich.de/record/894879/files/3-D_Electromagnetic_Modeling_Explains_Apparent-Velocity_Increase_in_Crosshole_GPR_Data-Borehole_Fluid_Effect_Correction_Method_Enables_to_Incorporating_High-Angle_Traveltime_Data.pdf
000894879 8564_ $$uhttps://juser.fz-juelich.de/record/894879/files/Invoice_APC600247489.pdf
000894879 8564_ $$uhttps://juser.fz-juelich.de/record/894879/files/TGRS-2020-03017_Proof_hi-2-9.pdf$$yOpenAccess
000894879 8767_ $$8APC600247489$$92021-09-07$$d2021-09-10$$ePage charges$$jZahlung erfolgt$$z920 USD / Belegnr. 1200171258
000894879 909CO $$ooai:juser.fz-juelich.de:894879$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166264$$aForschungszentrum Jülich$$b0$$kFZJ
000894879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000894879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169315$$aForschungszentrum Jülich$$b2$$kFZJ
000894879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
000894879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b4$$kFZJ
000894879 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000894879 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000894879 9141_ $$y2022
000894879 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894879 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894879 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T GEOSCI REMOTE : 2021$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000894879 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T GEOSCI REMOTE : 2021$$d2022-11-11
000894879 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894879 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000894879 980__ $$ajournal
000894879 980__ $$aVDB
000894879 980__ $$aUNRESTRICTED
000894879 980__ $$aI:(DE-Juel1)JSC-20090406
000894879 980__ $$aI:(DE-Juel1)IBG-3-20101118
000894879 980__ $$aAPC
000894879 9801_ $$aAPC
000894879 9801_ $$aFullTexts