001     894879
005     20230127125339.0
024 7 _ |a 10.1109/TGRS.2021.3107451
|2 doi
024 7 _ |a 0018-9413
|2 ISSN
024 7 _ |a 0196-2892
|2 ISSN
024 7 _ |a 1558-0644
|2 ISSN
024 7 _ |a 2128/30632
|2 Handle
024 7 _ |a altmetric:113062269
|2 altmetric
024 7 _ |a WOS:000732750600001
|2 WOS
037 _ _ |a FZJ-2021-03450
082 _ _ |a 620
100 1 _ |a Mozaffari, Amirpasha
|0 P:(DE-Juel1)166264
|b 0
|e Corresponding author
|u fzj
245 _ _ |a 3-D Electromagnetic Modeling Explains Apparent-Velocity Increase in Crosshole GPR Data-Borehole Fluid Effect Correction Method Enables to Incorporating High-Angle Traveltime Data
260 _ _ |a New York, NY
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643695694_23481
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For high-resolution crosshole ground-penetrating radar (GPR) tomography, a wide-range of ray path angles are required, including transmitter-receiver pairs with high-angles. However, artefacts have been observed in the inverted GPR tomograms when high-angle data were incorporated in ray-based inversion (RBI) tomography, due to not well-understood increasing apparent velocities for increasing ray-angles. To reduce these artefacts, it is common practice to limit the angular aperture to a threshold between 30° to 50°, which reduces the spatial resolution. We apply 3D finite-difference time-domain GPR modelling including borehole fluid and resistive loaded finite-length antenna models to study the increase of apparent velocity with increasing ray path angle. This study shows that the strong refraction of the electromagnetic waves at the borehole interface between water and subsurface is one of the reasons for these not well-understood phenomena. We introduce a novel borehole-fluid effect correction (BFEC) that relocates the transmitter and receiver positions to the location where the refraction is occurring to remove any influence of the borehole such that the remaining traveltimes can be inverted using an RBI. BFEC improves the estimated apparent-velocity (relative permittivity) values and enables the incorporation of wide-angle ray paths resulting in more accurate tomograms. We verify the BFEC for a homogenous and realistic synthetic model. By applying curved-ray RBI without and with the BFEC, the subsurface structures are reconstructed with more details for the BFEC data and average relative error model reduced from 13% to under 9% for the high-resolution inhomogeneous model.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 1
|u fzj
700 1 _ |a Zhou, Zhen
|0 P:(DE-Juel1)169315
|b 2
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 4
|u fzj
773 _ _ |a 10.1109/TGRS.2021.3107451
|g p. 1 - 10
|0 PERI:(DE-600)2027520-1
|p 1 - 10, Art no. 5905710
|t IEEE transactions on geoscience and remote sensing
|v 60
|y 2022
|x 0018-9413
856 4 _ |u https://juser.fz-juelich.de/record/894879/files/3-D_Electromagnetic_Modeling_Explains_Apparent-Velocity_Increase_in_Crosshole_GPR_Data-Borehole_Fluid_Effect_Correction_Method_Enables_to_Incorporating_High-Angle_Traveltime_Data.pdf
856 4 _ |u https://juser.fz-juelich.de/record/894879/files/Invoice_APC600247489.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894879/files/TGRS-2020-03017_Proof_hi-2-9.pdf
909 C O |o oai:juser.fz-juelich.de:894879
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T GEOSCI REMOTE : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T GEOSCI REMOTE : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21