000894895 001__ 894895
000894895 005__ 20250129092416.0
000894895 0247_ $$2Handle$$a2128/28893
000894895 037__ $$aFZJ-2021-03461
000894895 1001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b0$$eCorresponding author$$ufzj
000894895 1112_ $$aIEEE 47th European Solid-State Circuits Conference$$cGrenoble$$d2021-09-13 - 2021-09-17$$gESSCIRC$$wFrance
000894895 245__ $$aBias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications
000894895 260__ $$c2021
000894895 3367_ $$033$$2EndNote$$aConference Paper
000894895 3367_ $$2DataCite$$aOther
000894895 3367_ $$2BibTeX$$aINPROCEEDINGS
000894895 3367_ $$2DRIVER$$aconferenceObject
000894895 3367_ $$2ORCID$$aLECTURE_SPEECH
000894895 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1636036988_8170$$xAfter Call
000894895 520__ $$aA scalable eight channel DAC designed in a TSMC 65-nm CMOS technology for generation of solid-state quantum bit (qubit) bias voltages is presented. Measurement results of the DAC and some additional auxiliary components like an on-chip amplifier and sigma-delta modulator at 6 K are discussed. With a low-power consumption of 2.7 μW per channel, the DAC fulfills the requirements to be placed next to qubits inside a mixing chamber of a dilution refrigerator, showing a promising way for scaling qubit numbers toward a quantum computer.
000894895 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000894895 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b1$$ufzj
000894895 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b2$$ufzj
000894895 7001_ $$0P:(DE-Juel1)168167$$aNielinger, Dennis$$b3$$ufzj
000894895 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
000894895 7001_ $$0P:(DE-HGF)0$$aHeinen, Stefan$$b5
000894895 8564_ $$uhttps://juser.fz-juelich.de/record/894895/files/Presentation-1.pdf$$yOpenAccess
000894895 909CO $$ooai:juser.fz-juelich.de:894895$$pdriver$$pVDB$$popen_access$$popenaire
000894895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b0$$kFZJ
000894895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b1$$kFZJ
000894895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b2$$kFZJ
000894895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b3$$kFZJ
000894895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b4$$kFZJ
000894895 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000894895 9141_ $$y2021
000894895 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894895 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000894895 9801_ $$aFullTexts
000894895 980__ $$aconf
000894895 980__ $$aVDB
000894895 980__ $$aUNRESTRICTED
000894895 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000894895 981__ $$aI:(DE-Juel1)PGI-4-20110106