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ABSTRACT 

Background. The cue-reactivity paradigm is a widely adopted neuroimaging probe 

engendering brain activity linked with attentional, affective, and reward processes following 

presentation of appetitive stimuli. Given the multiple mental operations invoked, we sought to 

decompose cue-related brain activity into constituent components employing emergent meta-

analytic techniques when considering drug and natural reward-related cues.  

Methods. We conducted multiple coordinate-based meta-analyses delineating common 

and distinct brain activity convergence across cue-reactivity studies (N=196 articles) involving 

drug (n=133) or natural reward-related (n=63) visual stimuli. Subsequently, we characterized the 

connectivity profiles of identified brain regions by using them as seeds in task-independent and 

task-dependent functional connectivity analyses. Using hierarchical clustering on these 

connectivity profiles, we grouped cue-related brain regions into subnetworks. Functional decoding 

was then employed to characterize mental operations linked with each subnetwork.    

Results. Across all studies, pooled activity convergence was observed in the striatum, 

amygdala, thalamus, cingulate, insula, and multiple frontal, parietal, and occipital regions. Drug-

distinct convergence (drug>natural) was observed notably in the posterior cingulate cortex (PCC), 

dorsolateral prefrontal cortex (dlPFC), and temporal and parietal regions, whereas distinct natural 

reward convergence (natural>drug) was observed in thalamic, insular, orbitofrontal, and occipital 

regions. Hierarchical clustering using each regions’ connectivity profiles identified six 

subnetworks, involving: 1) occipital and thalamic (lateral geniculate nucleus) regions functionally 

linked with early visual processing, 2) occipital-temporal regions associated with higher level 

visual association, 3) parietal-frontal regions linked with cognitive control mechanisms, 4) 

posterior and ventral insula as well as anterior cingulate cortex (ACC) functionally linked with 

salient event detection, 5) nucleus accumbens, PCC, precuneus, ACC, and thalamus (mediodorsal) 

associated with subjective valuation, and 6) bilateral amygdalae, orbitofrontal, and dorsal insula 

regions linked with affective processes.   

Conclusions. These outcomes suggest multifaceted brain activity during the cue-reactivity 

paradigm can be decomposed into more elemental processes and indicate that while drugs of abuse 

usurp the brain’s natural reward processing system, some regions appear distinctly related to drug 

cue-reactivity (e.g., PCC, dlPFC).  
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INTRODUCTION 

The cue-reactivity paradigm is commonly adopted in neuroimaging research to assess 

neurobiological processes linked with reward, behavioral motivation, craving, and in the context 

of addiction, to probe the incentive salience of drug-associated stimuli [1-3]. The paradigm’s 

central tenet is that stimuli previously predicting receipt of drug or natural reward (e.g., food) can 

under certain conditions, evoke stimulus-associated responses such as urge to use drug or to eat 

[4]. That is, learned cues come to signal the drug or natural reward such that the cues themselves 

trigger arousal, anticipation, and changes in behavioral motivation. Cue-reactivity can be 

physiological (e.g., sweating, salivation, brain activity), symbolic-expressive (e.g., craving) [5], 

and/or behavioral (e.g., drug[food]-seeking, consumption) [6]. Although a relatively simple 

procedural design, the cue-reactivity paradigm elicits widespread brain activity across numerous 

regions likely involved in perceptual, attentional, memory, reward, and emotional processes. 

Despite this complex neurobiological response, little work has attempted to systematically and 

quantitatively decompose cue-related brain activity into more elemental processes or to 

characterize activity differences between drug-related and natural-reward cues.  

Given that increased attention and responsivity to drug-related stimuli is one mechanism 

contributing to the development and maintenance of substance use disorders (SUDs) [7], enhanced 

insight into cue-reactivity’s more elemental processes has potential implications for addiction 

prevention and treatment. For example, alcohol dependent individuals who respond to naltrexone, 

a medication to reduce relapse risk, demonstrate greater pretreatment ventral striatal activity to 

alcohol (vs. neutral) cues, suggesting that elevated cue-reactivity may represent an endophenotype 

to prospectively identify those most likely to show a treatment response [8]. Even after an extended 

period of abstinence (e.g., years), cues are an often-cited reason for relapse [9, 10]. Relapse 

prevention, a cognitive-behavioral intervention, facilitates identification of high-risk situations to 
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modify problematic behaviors that increase relapse likelihood and severity. Among these high-risk 

situations are those provoking craving, where learned cue associations are thought to drive drug 

anticipation [11, 12]. As such, continued development of second-line interventions focused on cue-

induced physiological, cognitive, and behavioral reactivity holds potential to reduce recidivism 

rates. Systematic delineation of elemental neurobiological processes linked with cue-reactivity 

may provide heuristic value and expedite the evolution of second-line treatments (pharmacological 

or cognitive behavioral) to mitigate the impact of cues on drug-seeking and -taking behaviors.   

As evidenced by prior meta-analytic work, visual drug-related (vs. control) cues evoke 

brain activity in visual cortices, prefrontal cortex (PFC), anterior cingulate cortex (ACC), 

amygdala, and the striatum among users of various substances (e.g., nicotine, alcohol, cannabis, 

cocaine, heroin) [12-18]. Among drug-free adults, meta-analyses focused on brain reactivity to 

food- and sexual-related visual stimuli have documented increased activity in the ventromedial 

prefrontal cortex (vmPFC), amygdala, anterior insula, mediodorsal thalamus, and striatum [19, 

20]. Across these two appetitive cue domains, brain regions consistently engaged appear to be 

involved with visual perception processes, cognitive control (PFC), attention (ACC and insula), 

reward (ventral striatum [VS]), habitual learning (dorsal striatum [DS]), and emotion (amygdala). 

For example, increased activity and elevated extracellular dopamine concentration within 

mesocorticolimbic circuitry correlates with drug-seeking and -taking behaviors [21, 22], and 

nigrostriatal circuitry is essential for habit learning and behavioral automaticity [23]. Noteworthy, 

a limited window on an inverted-U shaped function of neurotransmitter (i.e., dopamine) levels 

within these circuits is linked with optimal reward, motivation, memory, and stress functioning, as 

well as effective decision-making and inhibitory control [24, 25].  

The overlap of brain circuits engaged during drug and natural reward-related cue-reactivity 

suggests common mechanisms involved in assigning value to appetitive stimuli and transforming 
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these subjective valuations into actions [26]. An entrenched view is that repeated drug use 

“hijacks” the brain’s reward system which evolved to maintain survival of the organism and 

species by reinforcing consummatory and procreative behaviors [22, 27, 28]. Addictive drugs 

produce a greater magnitude and longer-lasting concentration of synaptic dopamine than natural 

rewards, leading to a profound remodeling of these systems following extended use [29]. Extensive 

evidence supports the notion that drugs of abuse usurp natural reward mechanisms via modulation 

of neuronal morphology [30, 31], neurotransmitter systems [32, 33], and region-to-region 

functional interactions involved in reward learning [34], notably in prefrontal and striatal regions. 

While prior work has tended to emphasize overlapping brain regions responsive to drug and natural 

rewards, less often highlighted are those brain regions that may be distinctly associated with drug-

cue reactivity.  

Here, we expanded on prior meta-analytic work to provide enhanced insight into the 

pooled, common, and distinct brain regions, the putative subnetworks of regions recruited, and the 

elemental mental operations linked with such subnetworks during appetitive cue-reactivity. To 

identify convergent brain activity across and between drug and natural reward-related studies, we 

conducted multiple coordinate-based meta-analyses and anticipated that both cue domains would 

largely recruit similar brain regions. To then identify subnetworks of functionally connected brain 

regions, we computed both task-independent and task-dependent connectivity profiles, applied 

hierarchical clustering on these profiles, and expected that cue-related brain regions would form 

groups resembling commonly observed large-scale brain networks (e.g., visual [35], executive 

control [36], salience [36], subjective value [37], and default mode [38, 39] networks). Finally, to 

characterize the mental operations putatively linked with each cue-reactivity-related subnetwork, 

we employed formal behavioral decoding techniques and anticipated that such decoding would 

yield a collection of terms with a common interpretable cognitive theme. 
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METHODS 

Cue-reactivity literature search. We conducted an iterative literature search to compile 

a comprehensive corpus of peer-reviewed, visual cue-reactivity, functional magnetic resonance 

imaging (fMRI) studies focused on drugs of abuse or natural rewards published up until August 

2020. In the first iteration, we searched multiple databases, including Google Scholar 

(https://scholar.google.com) and PubMed (https://www.ncbi.nlm.nih.gov/pubmed), for peer-

reviewed articles indexed by a combination of keywords: (“cue-reactivity” OR “drug cue” OR 

“natural cue”) AND (“fMRI” OR “meta-analysis” OR “GingerALE”) AND/OR (“nicotine” OR 

“smoking” OR “cocaine” OR “cannabis” OR “heroin” OR “alcohol” OR “sexual” OR “sex” OR 

“food”). In the second iteration, candidate studies were identified by reviewing the bibliographies 

of existing meta-analyses [3, 19, 20, 26, 40-42]. Finally, we examined the reference lists of relevant 

articles for potential studies not located via database searches or existing meta-analyses.  

The inclusion/exclusion criteria for our meta-analyses were as follows. First, only 

empirical English language fMRI studies assessing drug or natural reward-related cue-reactivity 

using visual stimuli were included (other sensory cues [e.g., gustatory, olfactory, tactile] were not 

considered). Second, only studies reporting activity foci as 3D coordinates (X, Y, Z) in Talairach 

or Montreal Neurological Institute (MNI) stereotaxic space were included (studies involving 

regions of interest [ROIs] derived from a brain parcellation scheme were excluded given the 

absence of coordinates). Third, experiments reporting coordinates from whole-brain or small-

volume corrected analyses involving a within-participant contrast of drug cues>control stimuli or 

natural reward-related cues>control stimuli were included. Finally, relevant information was 

recorded regarding participant age and sex, cue type (i.e., nicotine, alcohol, cannabis, cocaine, 
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heroin, food, or sexual), MRI scanner field strength, and processing software (e.g., AFNI, FSL, 

SPM).  

Identifying cue-related brain regions: Meta-analytic procedures. To highlight 

convergent brain activity across and between drug and natural reward-related cue-reactivity 

experiments, we employed a revised version [43, 44] of the Activation Likelihood Estimation 

(ALE) algorithm [45, 46] as implemented in NiMARE v0.0.3, a Python package for conducting 

neuroimaging meta-analyses (https://nimare.readthedocs.io/en/latest/). The ALE algorithm is a 

voxel-wise approach for identifying statistically significant spatial convergence across a collection 

of study coordinates by modeling brain activity foci as 3D Gaussian probability distributions, 

where the distributions’ widths represent sample size variability and spatial uncertainty [43, 46, 

47]. Activity foci reported by primary studies as Talairach coordinates were linearly transformed 

to MNI space before meta-analytic assessment [48]. The ALE algorithm first generated a set of 

modeled activation maps for each experimental contrast, where each voxel’s value corresponded 

to the maximum probability of activation. Then, the voxel-wise union of all modeled experimental 

contrasts was calculated yielding ALE values which quantified spatial convergence throughout the 

brain. These ALE values were transformed into p-values using a cumulative distribution function 

and resulting ALE maps were thresholded to highlight only voxels with p<0.001. Using a Monte 

Carlo approach, multiple comparisons correction was implemented such that a minimum cluster 

size threshold was determined through a set of 10,000 iterations. For each iteration, foci in the 

dataset were first replaced by randomly selected coordinates within a gray matter mask, ALE 

values were then calculated for this randomized dataset, transformed to p-values, thresholded at 

p<0.001, and the maximum size of supra-threshold clusters was recorded. These maximum cluster 

size values were used to build a null distribution. Only clusters in the original thresholded ALE 

map larger than the cluster size corresponding to the null distribution’s 95th percentile were 
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retained in family-wise error (FWE) corrected convergence maps reported herein. In other words, 

multiple comparisons corrections for all analyses were applied using a cluster-forming threshold 

(pvoxel-level <0.001) and a cluster-extent threshold (pFWE-corrected <0.05) [49]. Surface-based and axial-

slice visualization of thresholded maps were generated using NiLearn plotting tools [50]. 

We performed multiple ALE meta-analyses delineating common and distinct brain activity 

convergence when considering foci obtained from a contrast of drug or natural reward-related cue 

presentation relative to control stimuli presentation (i.e., drug>control, natural>control). First, to 

assess pooled convergence across cue domains, a meta-analysis was performed utilizing all 

coordinates identified across both drug and natural cue-reactivity studies thereby highlighting 

regions consistently showing greater activity following appetitive cue presentation relative to 

control stimuli (i.e., cues>control). Second, we categorized coordinates into drug (i.e., 

drug>control) and natural reward-related (i.e., natural>control) groupings and conducted two 

separate meta-analyses utilizing the same thresholding described above to elucidate convergent 

activity within each cue domain (Supplemental Tables S1 & S2). To identify regions common to 

both domains, a conjunction analysis was performed employing the minimum statistic [51] which 

identified overlapping voxels from the two thresholded ALE maps (i.e., drugs>control ⋂ 

natural>control). Third, we performed a meta-analytic contrast analysis to statistically compare 

differences in activity convergence associated with drug versus natural reward cues (i.e., 

drug>natural, natural>drug). To identify regions distinctly linked to each cue domain, this contrast 

analysis first calculated the observed difference in ALE statistics by subtracting the unthresholded 

ALE image for the drug>control contrasts from the unthresholded ALE image for natural>control 

contrasts. Next, we then created a null distribution of ALE difference scores to assess the statistical 

significance of the observed differences. To do so, we pseudo-randomly permuted the 

experimental contrasts between groups, calculated voxel-level difference scores, and repeated this 
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procedure 10,000 times. For each iteration, experimental contrasts were shuffled and an equal 

number of contrasts to that originally observed for the drug>control and natural>control conditions 

were assigned to each group. Then, pseudo-ALE images were generated for these permuted 

groupings and subtracted. Next, voxel-level p-values were assigned based on a given voxel’s 

observed difference score compared to that voxel’s null distribution of pseudo-ALE difference 

scores (pFWE-corrected <0.05). A similar approach has been used in previous meta-analytic studies to 

identify statistically distinct regions within one ALE map versus another [46, 52, 53]. To exclude 

small regions of potential spurious differences, an additional extent-threshold of 100 contiguous 

voxels (arbitrarily chosen) was applied.  

Subgrouping cue-related brain regions: Functional connectivity profiles and 

hierarchical clustering procedures. To define cliques (i.e., subgroups) of functionally connected 

brain regions, we computed connectivity profiles utilizing both task-independent and task-

dependent functional connectivity assessments for each ROI extracted from the pooled cue-

reactivity meta-analysis. Given that some of the pooled cue-reactivity clusters spanned multiple 

anatomical regions, which may represent distinct functional nodes, we defined ROIs by generating 

6-mm radius spherical seeds at the local maxima within each cluster. For this, we utilized FSL’s 

cluster command and required spherical ROIs be distanced at least 20mm from each other. ROI 

labels were assigned via AFNI’s whereami command.   

Task-independent functional connectivity: Resting-state fMRI (rs-fMRI). For each cue-

related ROI, seed-based assessments were conducted to identify task-independent functional 

connectivity between the average ROI time-course and all other brain voxels. To derive robust 

resting-state functional connectivity (rsFC) maps, we utilized the minimally pre-processed and 

denoised rs-fMRI data provided by the Human Connectome Project’s (HCP; [54]) Young Adult 

Study (S1200 Data Release; March 1, 2017). On November 12, 2019, 150 randomly selected 
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participants (meanSD: 28.73.9 years old) were downloaded via the HCP’s Amazon Web 

Services Simple Storage Solution repository. The sample included 77 females (30.33.5 years old) 

and 73 males (27.1 3.7 years). While this age difference between biological sexes was significant 

(t[149]=-5.3, p<0.001), it is also consistent with that noted in the full S1200 Data Release [54].  

Detailed HCP data acquisition parameters can be found in consortium manuscripts [55-57] 

and relevant scanning parameters are briefly summarized here. Each participant underwent T1-

weighted and T2-weighted structural acquisitions and four rs-fMRI acquisitions (15min each) on 

the 3T Siemens Connectome MRI scanner with 32-channel head coil. Structural images were 

collected at 0.7-mm isotropic resolution. Whole-brain EPI acquisitions were acquired with 

TR=720ms, TE=33.1ms, in-plane FOV=208×180mm, 72 slices, 2.0mm isotropic voxels, and 

multiband acceleration factor=8 [58]. 

The S1200 Data Release contains minimally pre-processed and denoised MRI data. The 

pre-processing workflow is detailed in Glasser and colleagues (2016) [59] and involved typical 

imaging pre-processing techniques leveraging the HCP’s high-resolution data acquisition. First, 

T1- and T2-weighted images were aligned, bias field corrected, and registered to MNI space. 

Second, the fMRI pipeline involved spatial distortions removal, volume realignment to 

compensate for subject motion, fMRI volume registration to structural scans, bias field reduction, 

normalization of functional time courses to the global average, and masking of non-brain tissue. 

No overt spatial smoothing was performed and care was taken by the developers to minimize 

inadvertent interpolation-induced smoothing. To minimize physiological and/or movement 

artifacts, HCP functional data were denoised using FMRIB’s ICA-based X-noiseifier (FIX; [60]) 

to auto-classify independent components analysis (ICA) components as either “signal” (i.e., brain 

activity) or “noise” (e.g., non-neuronal signals) via pattern classification of multiple spatial and 

temporal features. Briefly, ICA was independently performed on each functional dataset and each 
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component’s characteristics (e.g., spatial topography, frequency band power), were evaluated by 

a classifier. The time-series of artifactual components were then regressed from the data, providing 

a “cleaned”, denoised dataset. 

Using the HCP’s denoised rs-fMRI dataset, the average time course from each participant’s 

seed ROIs was extracted as well as the average time course across all brain voxels. Within each 

ROIs’ separate deconvolution (FSL’s FEAT, [61]), we entered this “global signal” time course as 

a regressor of no interest and spatially smoothed with a 6mm FWHM kernel. Although 

controversial, the global signal regressor was included given that others have demonstrated it 

performs better than alternative and commonly used motion-correction strategies for HCP rs-fMRI 

data [62]. Subject-level results for each ROI were averages across each participant’s 4, 15min. rs-

fMRI runs computed using a fixed-effects analysis. A group-level, mixed-effects analysis [63] was 

then performed to derive rsFC maps for each ROI. Images were non-parametrically thresholded 

using Gaussian Random Field theory-based maximum height thresholding (voxel-level FWE-

corrected at p<0.001) [64], which has been argued to provide more spatially specific rsFC maps 

when using large datasets yielding highly powered studies [65]. 

Task-dependent functional connectivity: Meta-analytic coactivation modeling (MACM). 

For each cue-related ROI seed, we also conducted MACM analyses to delineate functional 

connectivity profiles during task-based behavioral performance. Functional connectivity within 

this framework reflects the coactivation of spatially distinct brain regions with the seed across 

numerous and varied task-based neuroimaging studies [38]. Specifically, coactivation patterns are 

operationalized as an above-chance convergence of activity across the neuroimaging literature 

demonstrating simultaneous activation with a given seed location [66]. In other words, MACM 

maps indicate those brain regions that are most likely to coactivate with a given ROI seed across 

multiple task states and behavioral domains.  
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To map the task-dependent coactivations for our identified cue-reactivity-related ROI 

seeds, we utilized Neurosynth [67], a large database of over 150,000 published stereotactic 

coordinates from over 14,000 fMRI studies. Neurosynth compiles (or “scrapes”) published fMRI 

results for all reported coordinates using an automated coordinate extraction tool. As the process 

is automated, fMRI studies reporting results from multiple experimental contrasts are compiled 

into a single coordinate set and “activation” or “deactivation” foci are not explicitly categorized. 

While this inherent “noise” may limit interpretations, the large amount of compiled data afforded 

by an automated approach (versus a more detailed, yet manually curated approach) is generally 

regarded to outweigh such limitations. 

To generate MACM maps for each ROI, we searched the Neurosynth database for all 

studies reporting a coordinate within each cue-related ROI mask using NiMARE. While 

Neurosynth tools are available for meta-analytic assessments, we opted to use the ALE algorithm 

implemented within NiMARE given its documented performance regarding replication of image-

based meta- and mega-analyses [68]. While the standard ALE algorithm requires participant 

sample sizes to generate smoothing kernels for coordinate blurring, the Neurosynth database does 

not capture sample size. As such, we employed a consistent 15mm FWHM kernel for all study 

coordinates, as this parameter value has shown the greatest correspondence between coordinate-

based meta-analysis (i.e., peak activations) and “gold standard” image-based meta-analysis (i.e., 

whole-brain statistical images) outcomes [68]. Paralleling rsFC assessments, MACM maps were 

thresholded with a voxel-level FWE correction of p<0.001.  

Hierarchical clustering of cue-related brain regions. We performed hierarchical clustering 

to subgroup identified cue-related ROIs with similar functional connectivity profiles based on 

their: 1) resting-state functional connectivity patterns (i.e., task-independent), 2) meta-analytic 

coactivation patterns (i.e., task-dependent), and 3) allowing us to arrive at our final groupings, the 
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multimodal integration of both task-independent and -dependent cross-correlation matrices. rsFC 

and MACM cross-correlation matrices were calculated separately using unthresholded 

connectivity maps to reduce the impact of sparsity associated with thresholding. Three-

dimensional images representing connectivity were vectorized and concatenated to create a VxM 

matrix, where V was the number of voxels in the standard 2mm MNI152 brain template and M 

was the number of maps (i.e., ROIs). Pearson correlation coefficients were then calculated between 

connectivity maps for each pair-wise combination of M ROIs, yielding a new MxM correlation 

matrix. Then, an agglomerative hierarchical cluster tree was separately calculated for the rsFC and 

MACM matrices, which described how the input ROIs grouped together based on the similarity 

of their task-independent and -dependent maps, respectively. Hierarchical clustering assembles 

similar elements (i.e., cue-related ROI seeds) into clusters/cliques/subgroups in a stepwise manner, 

such that ROIs within a given cluster have the most similar features, yet are maximally distinct 

across clusters. The algorithm does so by finding two clusters that are closest together, and merging 

the two most similar ones until all are merged as measured by a standardized Euclidean ‘distance’ 

method and Ward’s minimum variance ‘linkage’ [69, 70].  

Hierarchical clustering of the rsFC matrix provided cliques demonstrating similar task-

independent connectivity, while clustering of the MACM correlation matrix provided cliques 

demonstrating similar task-dependent coactivation patterns. Given these different neuroimaging 

modalities, it is possible (and likely) for clustering outcomes to differ (i.e., seeds assigned to 

different cliques or different numbers of cliques). As such, to provide a consensus view integrating 

both task-independent and -dependent profiles, we again performed hierarchical clustering as 

described above, but now using an integrated multimodal correlation matrix combining rsFC and 

MACM information. The multimodal correlation matrix was calculated by averaging the 

respective elements across rsFC and MACM matrices. Given that the multimodal correlation 
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matrix combined data from multiple sources, we considered the resulting cluster solution as our 

final groupings. 

The results of the rsFC, MACM, and multimodal clustering analyses were represented 

visually in separate dendrograms. A dendrogram displays all variables (i.e., ROIs) entered into the 

clustering analysis on one axis and distance between ROIs on the other axis. Variables are joined 

together as clusters using branches such that the distance between two variables is indicated by the 

branch height on the distance axis. Similarities between ROIs were defined by the Euclidean 

distances between columns in each correlation matrix, representing not only one ROI’s similarity 

to another, but also, how similar the two ROIs’ connectivity was to all other ROIs in the cluster 

analysis. Subsequently, distances between clusters were defined using Ward’s minimum variance. 

Ward’s algorithm seeks to generate clusters by minimizing the within cluster sum of squares:  

𝑑(𝑟, 𝑠) =  √
2𝑛𝑟𝑛𝑠

(𝑛𝑟+𝑛𝑠)
‖𝑥𝑟̅̅̅ − 𝑥𝑠̅‖2, 

where ‖ ‖2 is the Euclidean distance, 𝑥𝑟̅̅̅ and 𝑥𝑠̅ are the centroids of clusters r and x, nr and ns are 

the number of elements in clusters r and s. Thus, Ward’s minimum variance values represented 

similarities (or dissimilarities) between clusters which is represented on the dendrogram axes as 

distances.  

Functional decoding of cue-related brain region subgroups. To provide insight into the 

mental operations putatively linked with each cluster/clique/subgroup of cue-related ROIs from 

the integrated multimodal clustering solution, we performed functional decoding analyses in 

Neurosynth [67] leveraging the averaged and unthresholded MACM map across ROIs within a 

clique. Neurosynth provides distinct psychological concepts for whole-brain meta-analytic maps 

or identified ROIs and vice-versa. Specifically, Neurosynth computed the spatial correlation 

between the cliques’ input maps and maps associated with each of the 1,335 Neurosynth terms. A 
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ranked list of maximally related psychological terms was produced providing a semi-quantitative 

strategy for interpreting each input map informed by the broader literature. Currently, there is no 

established statistical test for determining whether a term is “significantly” associated with a given 

input map. However, previous approaches [71, 72] have interpreted the top functional and 

anatomical terms, while disregarding terms which provide less interpretational value. Specifically, 

prior work has classified Neurosynth terms as ‘functional’, ‘anatomical’, ‘non-content’, or 

‘participant-related’ (https://github.com/62442katieb/ns-v-bm-decoding). Here, we interpreted the 

top 10 anatomical and 10 functional terms showing the highest correlations with each cliques’ 

input map. Any term that designated a duplicate (or synonym) of one already identified was 

recorded, but not included in the final list (see Supplemental Table S3 for details).  

 

RESULTS 

Literature search outcomes. We located a total of 196 peer-reviewed cue-reactivity 

articles, including 133 drug-related (4,093 participants; 1,243 females) and 63 natural reward-

related (2,110 participants; 1,138 females) studies composed of 274 experiments/contrasts 

involving a total of 3,237 brain activation foci (Supplemental Tables S1 & S2). A PRISMA flow 

diagram depicting the literature search and article inclusion process is provided in Supplemental 

Figure S1. The n=133 drug cue-reactivity studies were further categorized by substance and 

included: 55 nicotine, 39 alcohol, 10 cannabis, 16 cocaine, and 13 heroin studies. Similarly, the 

63-natural cue-reactivity studies were categorized by stimulus type and included: 33 sexual and 

30 food studies. The total number of foci extracted from the drug and natural reward studies was 

1,870 and 1,367, respectively. On average, drug cue-reactivity participants tended to be older 

(meanSD: 34.49.1 years) and predominantly male (females: 1,243; males: 2,739 males), relative 

to natural reward cue-reactivity participants (28.07.5 years, t[193]=1.98, p<0.001), a majority of 
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whom were female (females: 1,138; males: 972;  2 [1, N=6,092]=299.0, p<0.001) (Supplemental 

Table S1).  

Cue-related brain regions: Meta-analytic outcomes. To first identify regions 

consistently demonstrating greater activity following appetitive cue presentation relative to control 

stimuli, we conducted a pooled meta-analysis utilizing foci from both cue-reactivity domains (i.e., 

cues>control). When pooling foci from both drug and natural reward-related studies, convergent 

brain activity was observed notably in bilateral limbic regions (amygdala, striatum, thalamus), 

bilateral insula, left orbitofrontal cortex (OFC), left inferior frontal, bilateral ACC, bilateral 

inferior occipital and parietal, left PCC, bilateral precentral, left superior parietal, and left medial 

occipital (Fig. 1A; Table 1A). 

 Second, we characterized convergent activity following presentation of only drug-related 

stimuli, only natural reward-related stimuli, and the overlapping brain regions common to both cue 

domains. The drug cue meta-analysis (i.e., drug>control) identified significant activity 

convergence in nine clusters, including: left ACC, right nucleus accumbens (NAc), left PCC, left 

amygdala, bilateral inferior occipital and parietal, and right precentral regions (Fig. 1B, red-green). 

The natural reward meta-analysis (i.e., natural>control) identified significant convergence in ten 

clusters, including: left OFC, right inferior temporal and parietal, left inferior and medial occipital, 

right ACC, left supramarginal (SMG), left superior parietal, and bilateral precentral regions (Fig. 

1B, blue). We then performed a conjunction analysis to highlight common regions of convergence 

across both cue domains (i.e., [drug>control] AND [natural>control]) and observed overlap in 

eight clusters, including: right caudate, bilateral ACC, left amygdala, left inferior occipital, right 

inferior frontal, temporal, and parietal, and left thalamus regions (Fig. 1B, magenta; Table 1B).  

Finally, to elucidate distinct regions of convergence (i.e., domain specificity) for drug 

versus natural reward-related stimuli, we performed a contrast analysis. When considering drug 
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distinct convergence (i.e., [drug>control] > [natural>control]), we identified seven significant 

clusters including the bilateral PCC, left dorsolateral prefrontal cortex (dlPFC), right middle and 

inferior temporal, left inferior parietal, and right postcentral regions (Fig. 1C; Table 1C). When 

considering natural reward distinct convergence (i.e., [natural>control] > [drug>control]), we 

identified ten significant clusters, including: the bilateral OFC, multiple regions in the left 

occipital, right thalamus, right inferior temporal, right insula, right superior occipital, and right 

SMG regions (Fig. 1D; Table 1D).  

 Subgroups of cue-related regions: Functional connectivity profiles and hierarchical 

clustering outcomes. To delineate task-independent and task-dependent functional connectivity 

profiles for cue-related ROIs identified via the pooled meta-analysis above, we performed seed-

based rsFC and MACM assessments (Supplemental Fig. S2 & S3). Visual inspection of the rsFC 

and MACM hierarchical clustering dendrograms suggested a threshold of n=6 cliques for both 

neuroimaging modalities. Clustering solutions for task-independent rsFC patterns (Supplemental 

Fig. S4) and task-dependent MACM maps (Supplemental Fig. S5) yielded generally similar 

clique composition, with some notable differences (Fig. 2). Clique composition was largely 

consistent across both modalities when considering Clique 1 which demonstrated connectivity 

profiles originating in primary visual regions, including the lateral geniculate nucleus (LGN) of 

the thalamus, accompanied by shifts to visual association areas. Clique 2 for the rsFC solution was 

uniquely composed of extrastriate regions, whereas for the MACM solution, extrastriate regions 

clustered with the primary visual seeds in Clique 1. Clique 3 in the rsFC solution was largely 

consistent with Clique 2 in the MACM solution, where both included lateral parietal and frontal 

regions. Connectivity profiles for rsFC Cliques 4 and 5 and MACM Cliques 3, 4, and 5 were 

characterized by more medial and dorsal areas. Clique 4 in the rsFC solution corresponded to two 

distinct Cliques in the MACM solution, where MACM Clique 3 included more inferior frontal and 
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anterior insula regions and MACM Clique 5 included more ventral and posterior insula regions. 

MACM Clique 4 was composed of only two regions (PCC and precuneus), whereas these regions 

clustered with NAc, thalamic (mediodorsal), and dorsomedial PFC regions in rsFC Clique 5. A 

final shift in connectivity profiles to more ventromedial regions was noted for both clustering 

solutions in Clique 6, where the rsFC and MACM cliques included amygdala and OFC ROIs.  

To integrate both task-independent and -dependent functional connectivity profiles, we 

performed hierarchical clustering analysis on the integrated multimodal correlation matrix. Cue-

related ROIs (Fig. 3A) again clustered into 6 consensus cliques (Fig. 3B). Clique 1 (red) consisted 

of left medial and right inferior occipital gyri, and left thalamus (LGN) ROIs. Clique 2 (orange) 

grouped together bilateral inferior occipital and bilateral fusiform gyri ROIs. Clique 3 (yellow) 

included bilateral inferior and left superior parietal, bilateral precentral, and left inferior frontal 

seeds. Clique 4 (green) consisted of multiple seeds in the bilateral insulae (posterior and ventral 

subregions) and the bilateral ACC. Clique 5 (blue) grouped together left PCC, left precuneus, right 

ACC, bilateral thalamus (mediodorsal), and left NAc ROIs. Finally, clique 6 (purple) included left 

insula (dorsal subregion), left OFC, and bilateral amygdalae ROIs. 

Functional decoding outcomes for subgroups of cue-related brain regions. We then 

performed functional decoding for each consensus clique to enhance insight into associated mental 

operations. The top 10 unique Neurosynth functional and anatomical terms with the highest 

correlation values for each clique were taken into consideration (Fig. 3C; Supplemental Table 

S3). Neurosynth decoding outcomes were used to guide the following functional interpretation of 

cue-reactivity-related cliques: 

Clique 1 (Fig. 3, red) was composed of occipital and thalamic (LGN) regions and was 

associated with the Neurosynth functional terms: task, visual, stimulus, word, demands, reading, 

engaged, orthographic, object, and general. These functional decoding outcomes suggested this 

clique was associated with the theme of simple (early) visual perceptual processes. 
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Clique 2 (Fig. 3, orange) consisted of inferior occipital and fusiform regions and was 

linked with the functional terms: visual, object, visual word, reading, orthographic, characters, 

word form, face, perceptual, and task. These functional decoding terms suggested this clique was 

related to the theme of more complex visual information processing and association.  

 

Clique 3 (Fig. 3, yellow) consisted of lateral parietal and frontal regions, reminiscent of 

the canonical central executive network [36], and was linked with the Neurosynth terms: task, 

demands, working memory, attentional, load, visually, target, phonological, stimulus, and task 

difficulty. These outcomes suggested this clique was related to cognitive control and executive 

functions.  

 

Clique 4 (Fig. 3, green) was composed of ventral and posterior insulae as well as ACC 

regions, resembling the canonical salience network [36], and was associated with the functional 

terms: task, general, stimulus, demands, response, painful, conflict, response inhibition, task 

difficulty, and stop. These terms suggested this clique was linked with the occurrence of 

motivationally important (i.e., salient) events. 

 

Clique 5 (Fig. 3, blue) included ACC (ventral), PCC, thalamus, and NAc ROIs, regions 

often linked with the canonical default mode network [38, 39] and valuation network [37, 73, 74]. 

This clique was associated with the Neurosynth terms: general, reward, task, incentive, 

anticipation, monetary, engaged. motivation, retrieval, and decision. These outcomes suggested 

this clique was related to subjective value and choice, particularly in the context of reward.  

 

Clique 6 (Fig. 3, purple) included dorsal insula, OFC, and bilateral amygdalae regions and 

was linked with functional terms: pictures, neutral, emotional, stimuli, responses, general, 

unpleasant, valence, aversive, and affective. These functional decoding terms suggested this clique 

was associated with the theme of emotional processing.  

 

 

DISCUSSION 

We decomposed cue-related brain activity into constituent components employing 

emergent meta-analytic techniques to provide enhanced insight into the common and distinct brain 

regions and, in turn, their subnetworks linked with appetitive stimuli presentation and the potential 

mental operations associated with such subnetworks. We first identified pooled, common, and 

distinct regions of convergent brain activity when considering both drug and natural reward-related 

cue-reactivity studies. First, when collectively considering appetitive cues, pooled activity 

convergence was observed in the striatum, amygdala, thalamus, cingulate, insula, and multiple 

frontal, parietal, and occipital regions. Common regions of convergence where drug and natural 
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cue-reactivity overlapped included the caudate, amygdala, thalamus, ACC, and inferior frontal, 

parietal, temporal, and occipital regions. Drug distinct convergence was observed notably in the 

PCC, dlPFC, temporal, and parietal regions, whereas natural distinct convergence was observed 

in thalamic, insular, OFC, and occipital regions. Second, we characterized the functional 

connectivity profiles of those regions showing convergent activity following appetitive cue 

presentation by leveraging large task-independent and task-dependent MRI datasets. Lastly, we 

identified subnetworks/cliques of cue-reactivity-related regions from the functional connectivity 

profiles of ROIs and subsequently linked each subnetwork with more elemental mental operations. 

Based on these brain and behavioral profiles, we suggest that cue-reactivity engenders brain 

activity linked with visual, visual association, cognitive control, salience, valuation, and emotional 

operations. 

Common and distinct brain regions across cue-reactivity domains. When considering 

activity across both drug and natural reward-related stimuli, the pooled meta-analytic outcomes 

identified limbic (amygdala, striatum, thalamus), cingulate (ACC, PCC), insula, OFC, inferior 

frontal, superior parietal, precentral, and medial occipital regions of convergence across the cue-

reactivity literature. Our findings largely replicate priori meta-analytic assessments regarding the 

recruitment of the amygdala, striatum, ACC, PCC, insula, inferior/superior parietal, precentral 

gyrus, and inferior/medial occipital lobe following appetitive cue presentation [26]. The primary 

distinction between our findings and those of Noori and colleagues’ (2016) is that they reported 

additional regions of convergence in inferior and middle temporal gyri. When considering common 

meta-analytic outcomes, we observed overlap between drug and natural cue-reactivity in the 

caudate, amygdala, thalamus, ACC, and inferior frontal, parietal, temporal, and occipital regions. 

Our results replicate Noori and colleagues’ (2016) findings regarding cue domain overlap in the 

caudate, amygdala, ACC, and inferior frontal and parietal, and extend results to the thalamus, and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2020.02.26.966549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966549
http://creativecommons.org/licenses/by-nc-nd/4.0/


Drug and natural cue-reactivity                                                          Hill-Bowen et al. 

20 

inferior temporal and occipital regions. These regions identified as overlapping across drug and 

natural reward-related cue-reactivity studies potentially represent brain regions where drugs of 

abuse usurp reward mechanisms evolved to maintain survival of the organism and species [75].  

Moving beyond prior meta-analytic work, we identified brain regions demonstrating 

greater activity convergence during drug-related (vs. natural reward) cue-reactivity studies. Given 

we anticipated that both appetitive cue domains would largely recruit overlapping regions, we were 

initially surprised to observe multiple regions robustly linked with drug cue-reactivity notably 

including the PCC and dlPFC. Although prior meta-analytic work has not directly contrasted drug 

versus natural reward cue-reactivity, prior drug-specific meta-analyses have highlighted similar 

regions. For example, an alcohol cue-reactivity meta-analysis similarly identified PCC as well as 

temporal lobe convergence among studies of alcohol dependent (but not non-dependent) 

individuals [17]. Another previous meta-analysis focusing on cigarette cue-reactivity among daily 

smokers also identified activity convergence in the PCC as well as in the postcentral gyrus and 

superior frontal regions [14]. When considering drug-related cue reactivity irrespective of specific 

substances, meta-analyses have also noted activity convergence in the PCC and multiple frontal 

regions as well as in the amygdala, VS, inferior parietal, and occipital cortices [13]. Taken together 

and when combined with our direct meta-analytic contrast of drug versus natural reward-related 

cues, these observations highlight a potentially critical role for the PCC and dlPFC in drug-related 

cue-reactivity.  

The PCC, a key node of the default mode network (DMN), has received relatively less 

attention in the neuroimaging of drug addiction field relative to, for example, the striatum or insula. 

The PCC is linked with internally-directed [76], or self-referential mental operations including 

value-based attentional capture during perceptual decision-making [77, 78], attribution of personal 

meaning to salient events [79], and autonomic arousal and awareness [80]. Preclinical work with 
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macaques has demonstrated that PCC neurons signal decision outcomes in a gambling task [81]. 

That work also demonstrated that this reward-outcome information was maintained by PCC 

neurons throughout the task which ultimately predicted changes in choice behavior. Such findings 

suggest that PCC neurons are involved in subjective evaluative processes in reward-guided 

decision-making [81, 82]. This link with reward-guided decision-making may provide insight into 

the PCC’s critical role in addiction. For example, stroke damage to the PCC can result in the 

complete disruption of cigarette smoking [83]. We and others have suggested that the functional 

interactions between the PCC and other DMN regions may contribute to ruminations about 

substance use which could, in turn, perpetuate the addiction cycle [76, 84-87]. Taken together, 

drug-cues, more so than other appetitive cues, appear to engage the PCC which influences 

internally-directed processes such as value-based decision-making that may contribute to a strong 

motivational drive to obtain and take drugs.  

In the context of addiction, the dlPFC plays a key role in top-down down-regulation of 

brain regions encoding the value of drug-related rewards [88], as well as itself encoding contextual 

information (i.e., cues, intertemporal drug availability) that may jointly modulate the experience 

of drug craving [89]. As such, the dlPFC has been a frequent target for transcranial direct current 

stimulation (tDCS) and transcranial magnetic stimulation (TMS) to reduce craving and, in turn, 

use of multiple substances [89, 90]. tDCS-induced dlPFC inactivation during drug cue presentation 

appears to attenuate craving via modulation of other regions including the medial orbitofrontal 

cortex (mOFC), ACC, and VS [89]. Whereas the mOFC is believed to track the subjective value 

of drug stimuli, the dlPFC is thought to integrate information regarding cue information and 

temporal availability which can modulate the mOFC’s value signal [91]. Our results provide 

further corroborating support for the critical role of the dlPFC during drug cue exposure and, in 

turn, drug-seeking and -taking.  
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Distributed networks of cue-reactivity. SUDs are often conceptualized as impacting 

multiple brain circuits and networks, rather than a specific “lesion” within circumscribed brain 

regions [92]. Brain networks are characterized by a collection of regions, where the dynamic 

interactions of nodes within a network, as well as between other large-scale networks are linked 

with various mental operations such as: self-referential cognition (DMN), detection of and 

orientation to salient external and internal events [salience network (SN)], and higher-level 

cognition including working memory and attentional control [central executive network (CEN)] 

[93, 94]. As such, we examined the functional connectivity profiles (i.e., both rsFC and MACM) 

of cue-reactivity-related regions to cluster them into subnetworks and to delineate the more 

elemental mental operations associated with each subnetwork. We demonstrated that specific 

subnetworks within the broad collection of regions responsive to appetitive cues appear to show 

functional specialization. Through data-driven techniques, we identified six cliques with 

functional decoding outcomes indicating roles in visual, visual association, cognitive control, 

salience, valuation, and emotional processing. 

Visual perception subnetworks (Cliques 1 and 2). Inherent to the cue-reactivity 

paradigm is the recruitment of primary (clique 1) and associative visual cortices (clique 2) linked 

with stimulus perception. Noteworthy, we observed activity convergence in brain regions linked 

with visual perceptual processes when considering appetitive (vs. control) cues, suggesting that 

learned associations between predictive stimuli and rewards modulate top-down attention. As 

evidenced by prior work, the representation of basic visual features (e.g., local contrast, location, 

spatial frequency) can be modulated by top-down attention and learned associations between 

stimuli and reward [15, 104]. Pairing visual stimuli with a reward improves stimulus detection 

[105, 106], reduces response times [107, 108], and increases accuracy [109]. The neural 

mechanism by which rewards may regulate plasticity of the visual representation of reward-
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predicting stimuli is through dopamine signaling [110]. Accordingly, given learned associations, 

chronic substance users may demonstrate increased activity within visual processing circuitry 

when presented with drug-related stimuli which could be conceptualized as a neurobiological 

manifestation of attentional bias. While sensory processes have historically been overlooked in the 

addiction literature, these systems may have important implications for the development and/or 

maintenance of substance use. Indeed, cue-elicited activation of visual processing regions is linked 

with clinically-relevant outcomes such as drug craving [111], craving resistance [112], dependence 

severity and automatic motor responses to cues [113, 114], self-recognition of substance use 

problems [115], and importantly, to relapse itself [116].  

 Tripartite network integration (Cliques 3, 4, 5). The tripartite network heuristic 

framework focuses on three large-scale brain networks [93], the DMN, SN, and CEN. The CEN, 

a frontoparietal system with primary nodes in the dlPFC and lateral posterior parietal cortices, is 

linked with exogenous, attentionally driven cognitive functions [95, 96]. The DMN, centered on 

nodes in the PCC, mPFC, medial temporal lobe, and angular gyrus, is typically deactivated during 

stimulus-driven cognitive tasks and, on the other hand, is implicated in ruminations, mind 

wandering, and reflections on the past [77, 97]. The SN, anchored in the dorsal ACC and 

frontoinsular cortices, is typically associated with orienting attention to internal or external stimuli 

[36, 98]. Cue-reactivity Cliques 3, 4, and 5 identified in the current study closely corresponded to 

these canonical large-scale networks. 

Dysregulated activity within and between these three networks has been highlighted across 

various neuropsychiatric disorders including addiction [84, 94]. As the brain is continuously 

inundated with information arising from external and internal stimuli, optimal behavior 

necessitates control mechanisms to orient, identify, and act upon the currently most salient stimuli. 

The SN is often regarded as serving this role by influencing moment-to-moment information 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2020.02.26.966549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966549
http://creativecommons.org/licenses/by-nc-nd/4.0/


Drug and natural cue-reactivity                                                          Hill-Bowen et al. 

24 

processing and “toggling” between the internally directed DMN and the externally directed CEN 

[84]. Across stages of the addiction cycle (i.e., taking, withdrawal, urge), the insula is often 

highlighted as a critical region, that through its interactions with other brain regions alters affective 

states (e.g., irritability), motivation (e.g., cue-reactivity), and attention (e.g., bias to drug-related 

stimuli) [99]. For example, during withdrawal, increased insula engagement and coupling with the 

DMN may serve to orient attention toward this internal physiological state at the expense of 

externally focused mental operations linked with the CEN [84, 86, 95]. This anticorrelation 

between DMN and CEN dynamics is relevant for optimal task performance, where increased DMN 

activation and reduced CEN activation is often linked with suboptimal task performance among 

healthy individuals and those diagnosed with various neuropsychiatric conditions (including 

SUDs) [93, 100, 101]. One of the more frequently highlighted functions of the DMN in the context 

of neuropsychiatric conditions is ruminations about one’s internal state and self [102, 103]. 

Aberrant connectivity within the DMN is linked with impaired self-awareness, negative emotions, 

and obsessive thoughts about drugs which may contribute to relapse and compulsive drug-taking 

despite negative consequences [76]. Our results provide evidence that engagement of these three 

large-scale networks, comprising the tripartite network, are engaged during appetitive cue-

reactivity and potentially linked with self-referential cognition (DMN), detection and orientation 

to salient events (SN), and higher-level cognition (CEN).  

 Emotional processing (Clique 6). The final clique we identified as an elemental 

component of cue-reactivity grouped together amygdala, insula, and OFC regions. The amygdala 

can be subdivided into at least two distinct components, each comprising multiple nuclei, with 

cooperating functions: the basolateral complex (BLA) that encodes sensory-specific features of 

emotional events (i.e., Pavlovian conditioning), and the central nucleus (CeN) that encodes more 

general affective and motivationally significant aspects of emotional events [117, 118]. The 
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coordination of these two components supports the amygdala’s role in both appetitive and aversive 

motivational systems [119]. The reciprocal connections between the BLA and the OFC and insula, 

are critical for regulating goal-directed behaviors [120] and modulating decision-making processes 

[121]. For example, in the context of reward-learning, BLA and OFC interactions are critical for 

behavioral responses dependent on the acquisition and use of conditioned stimulus-reward 

associations [121], with BLA and insula connections facilitating encoding and retrieval of sensory 

information (i.e., gustation and taste) in relation to bodily state, thereby shaping perceived valence 

[122]. Dysregulated affective neurocircuitry is prominently featured in theorizing regarding the 

development and maintenance of substance use [123, 124]. For example, in chronic drug-

dependence, the amygdala is linked with aversive emotional states underlying withdrawal that 

through negative reinforcement, partly motivates the compulsive seeking and taking of drugs 

[125]. In other words,  while the amygdala and OFC play prominent roles in drug-related aversive 

behaviors, this circuitry is also engaged when encountering drug-associated stimuli (i.e., people, 

places, and objects) [126]. Thus affective-related neurocircuitry potentially contributes to both 

positive and negative reinforcement mechanisms perpetuating drug use.   

Limitations. Potential limitations warrant attention. First, our meta-analysis was limited 

to functional neuroimaging experiments, thus precluding any interpretation of underlying synaptic 

or molecular mechanisms. Second, all meta-analyses are susceptible to biases across the literature, 

are limited by the primary studies’ designs, and only include significant peak activations reported 

by those primary studies (i.e., publication bias). Third, the ALE meta-analytic algorithm does not 

take into consideration the size of the cluster identified from the primary studies, resulting in less 

precise representations than image-based meta-analytic approaches [68]. Fourth, when utilizing 

data-driven analytic approaches multiple parameter values often must be specified [127], and the 

hierarchical clustering employed herein involved selection of two such parameters, a distance 
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measure and a linkage algorithm. Based on prior work [69, 70, 128], we selected the standardized 

Euclidean ‘distance’ method and Ward’s minimum variance ‘linkage’, how the outcomes reported 

herein would differ as a function of the distance and linkage methods employed was beyond the 

scope of this work. Finally, a  biological sex discrepancy among participants between appetitive 

cue domains was noted, where drug-related articles assessed about twice as many male relative to 

female participants; for the natural-reward studies biological sex was more evenly balanced. This 

discrepancy potentially reflects the notion that males are more likely to use most types of illicit 

drugs [129] and typically present with higher rates of use and dependence [130]. Differences in 

brain reactivity to appetitive cues as a function of biological sex remains an important area of 

future investigation.  

Conclusions. In sum, the current study employed emergent neuroimaging meta-analytic 

techniques to enhance insight into the brain regions, subnetworks of regions recruited, and more 

precise elemental mental operations linked with such subnetworks during appetitive cue-reactivity. 

We identified convergent brain activity across and between drug and natural reward-related studies 

via multiple coordinate-based meta-analyses. Our outcomes indicated that while drugs of abuse to 

some degree usurp the brain’s natural reward processing system, some regions appear distinctly 

related to drug cue-reactivity (e.g., PCC, dlFPC). We also identified subnetworks of functionally 

connected brain regions by leveraging large task-independent and task-dependent MRI datasets, 

and applying hierarchical clustering on these connectivity profiles. We linked each subnetwork 

with more elemental mental operations and suggest that cue-reactivity engenders brain activity 

linked with visual processing networks, the tripartite network model, and an emotion related 

network. Enhanced insight into the more elemental neurobiological processes engendered during 

appetitive cue-reactivity may provide heuristic value in the service of advancing the evolution of 
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second-line cognitive behavioral and/or pharmacological interventions to reduce cue-induced 

relapse.  
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TABLES 

 

Table 1. Cluster coordinates for each meta-analytic assessment.  
      Cluster     Region Volume BA Side X Y Z 

A) Pooled cue-reactivity 
1  amygdala 55512  L -20 -4 -24 
       nucleus accumbens   L -6 8 -8 
       orbitofrontal gyrus  11/13 L -26 32 -16 
       amygdala   R 20 -4 -14 
       thalamus   B 0 -8 4 
       insula (ventral)   R 38 8 -12 
       insula (posterior)   L -38 -2 0 

       inferior frontal gyrus  45 L -44 34 12 
       insula   R 36 30 -4 
       insula (dorsal)  47 L -40 18 -10 
       insula (posterior)   R 40 -6 6 

2  anterior cingulate cortex 17216 24 R 2 36 10 
       anterior cingulate cortex  32/33 B 0 24 26 

3  inferior occipital gyrus 14992  R 48 -70 -8 
       fusiform gyrus  37 R 46 -54 -20 
       inferior occipital gyrus   R 32 -92 -8 

4  inferior occipital gyrus 10512  L -46 -68 -12 

       fusiform gyrus  37 L -42 -46 -22 
5  posterior cingulate cortex 5344 23 L -2 -34 32 
       precuneus  7 L -6 -58 38 

6  inferior parietal lobule 4616 7 R 32 -52 54 
7  precentral gyrus 2944 6 R 50 6 24 
8  inferior parietal lobule 2904 40 L -46 -36 44 
9  superior parietal lobule 2560 7 L -26 -62 48 
10  precentral gyrus 2264 6 L -46 4 28 
11  thalamus 1760  L -20 -32 -2 
12  medial occipital lobe 1512  L -12 -98 -2 

B) Common cue-reactivity 

1  caudate 7840  R 5 7 -7 
2  anterior cingulate cortex 2648 24 B 0 39 6 
3  amygdala 2464  L -21 -4 -19 
4  inferior occipital gyrus 1856 37 L -46 -67 -5 
5  inferior temporal gyrus 1472  R 48 -71 -6 
6  inferior frontal gyrus 1328 44 R 48 8 27 
7  thalamus 1216  L -1 -11 3 
8  inferior parietal lobule 784 7 R 33 -50 54 

C) Drug distinct convergence 
1  dorsolateral prefrontal cortex 9824 9 L -18 42 40 

2  posterior cingulate 7520 23 L -4 -50 26 
3  middle temporal gyrus 5600  R 62 -32 -6 
4  inferior temporal gyrus 5424 20 R 48 -4 -32 
5  inferior parietal lobule 5352  L -48 -62 30 
6  posterior cingulate 1128 33 R 6 -10 34 
7  postcentral gyrus 1040 1/2/3 R 24 -32 58 

D) Natural distinct convergence 
1  orbitofrontal gyrus 7608 11/13 L -24 32 -16 
2  orbitofrontal gyrus 1736 11/13 R 26 28 -16 
3  medial occipital lobe 1736  L -12 -98 -2 

4  thalamus 1392  R 22 -30 14 
5  inferior occipital gyrus 1312  L -50 -72 -6 
6  inferior temporal gyrus 1144 37 R 48 -62 -8 
7  middle occipital gyrus 1120  L -26 -92 8 
8  insula (posterior) 1024  R 42 -4 2 
9  superior occipital gyrus 952  R 28 -68 36 
10  supramarginal gyrus 808 40 R 50 -32 40 

Note. Lettering corresponds to contrasts shown in Figure 1: A, B, C, and D, respectively. Cluster 

coordinates for A, C, and D are based on voxel peak maximum, where coordinates for B are based on center 

of mass. All cluster coordinates (X, Y, Z) are reported in MNI space. Volume is mm3. See Supplemental 

Fig. S6 for cue-related ALE meta-analysis results using only coordinates from whole-brain assessments. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2021. ; https://doi.org/10.1101/2020.02.26.966549doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.966549
http://creativecommons.org/licenses/by-nc-nd/4.0/


Drug and natural cue-reactivity                                                          Hill-Bowen et al. 

36 

FIGURES AND LEGENDS 

 

 
Figure 1. Convergent brain activity across the pooled, common, and distinct cue-reactivity 

meta-analytic assessments. A) Pooled cue-reactivity (i.e., appetitive cues > control stimuli) was 

observed notable in bilateral limbic (amygdala, striatum, thalamus), bilateral insula, left 

orbitofrontal, left inferior frontal, bilateral ACC, bilateral inferior occipital and parietal, left PCC, 

bilateral precentral, left superior parietal, and left medial occipital. B) Drug cue-reactivity (i.e., 

drug > control) was observed notable in left ACC, right NAc, left PCC, left amygdala, bilateral 

inferior occipital and parietal, and right precentral (red-green). Natural cue-reactivity (i.e., natural 

> control) was observed notable in left orbitofrontal, right inferior temporal and parietal, left 

inferior and medial occipital, right ACC, left SMG, left superior parietal, and bilateral precentral 

(blue). A conjunction analysis identified common areas of overlap (pink) in right caudate, bilateral 

ACC, left amygdala, left inferior occipital, right inferior frontal, temporal, and parietal, and left 

thalamus. C) Distinct drug cue-related convergence (i.e., drug > natural) was observed in bilateral 

PCC, left dlPFC, right middle and inferior temporal, left inferior parietal, and right postcentral. D) 

Distinct natural cue-related convergence (i.e., natural > drug) was observed in the bilateral 

orbitofrontal, multiple regions in the left occipital, right thalamus, right inferior temporal, right 

insula, right superior occipital, and right SMG (pcluster-corrected <0.05, pvoxel <0.001). See 

Supplemental Fig. S6 for cue-related ALE meta-analysis results using only coordinates from 

whole-brain assessments.  
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Figure 2. Subgroups of cue-related regions defined using task-independent (rsFC) and task-

dependent (MACM) datasets. A) Visual representation with numberings showing cue-related 

ROIs. B-C) Hierarchical clustering of each seeds functional connectivity pattern defined 

subgroups of cue-related ROIs organized by functional similarity (rsFC: left, MACM: right). Both 

rsFC and MACM datasets yielded six cliques. The horizontal axes represent the dissimilarity (or 

variance) between clusters; distance was calculated using Ward’s linkage algorithm. Brain images 

visually represent the degree of overlap for rsFC (B) and MACM maps (C) within each clique, 

such that orange highlights the highest degree of overlap (all regions) and yellow and green 

highlights lower degrees of overlap.  
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Figure 3. Consensus subgroups of cue-related ROIs and functional decoding linking mental 

operations with each clique. A) Visual representation of cue-related ROIs where coloring 

designates clique assignment. B) Hierarchical clustering dendrogram of the integrated multimodal 

clustering solution which yielded our final subgrouping of cue-related ROIs. C) Visual 

representation of each cliques’ functional decoding outcomes. Circle size designates Neurosynth’s 

correspondence ranking of the term with the input map, where larger circles indicate terms with 

higher correlation coefficients. A full list of top 10 anatomical and functional terms is located in 

Supplemental Information.   
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