001     894927
005     20230123110537.0
024 7 _ |a 10.1016/j.scienta.2021.110546
|2 doi
024 7 _ |a 0304-4238
|2 ISSN
024 7 _ |a 1879-1018
|2 ISSN
024 7 _ |a 2128/28636
|2 Handle
024 7 _ |a altmetric:113079944
|2 altmetric
024 7 _ |a WOS:000697541900002
|2 WOS
037 _ _ |a FZJ-2021-03486
041 _ _ |a English
082 _ _ |a 640
100 1 _ |a Ruett, Marius
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Hyperspectral imaging for high-throughput vitality monitoring in ornamental plant production
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1631611280_26226
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ornamental heather (Calluna vulgaris) production is characterized by high risks such as occurrence of fungal diseases and plant losses. Given the general absence of formal research on this economically important production system, farmers depend on their own approaches to assess plant vitality. We provide a reproducible, affordable and transparent workflow for assessing ornamental plant vitality with spectroscopy data. We use hyperspectral imaging as a non-invasive alternative for monitoring plant performance by combining the long-term experience of experts with hyperspectral images taken with a portable hyperspectral camera. We tested a custom-made setup deployed in a horticultural production facility and screened thousands of heather plants over a period of 14 weeks during their development from cuttings to young plants under production conditions. The vitality of shoots and roots was classified by experts for comparison with spectral signatures of shoot tips of healthy and stressed plants. To identify wavelengths that allow distinguishing between healthy and stressed heather plants, we evaluated the datasets using Partial Least Squares regression. Reflectance in the green (519–575 nm) and red-edge (712–718 nm) region of the spectrum was identified as most important for classifying plants as healthy or stressed. We transferred the trained Partial Least Squares regression model to independent test data obtained on a different date, correctly classifying 98.1% of the heather plants. The setup we describe here is adjustable and can be used to measure different plant species. We identify challenges in data evaluation, point out promising evaluation approaches, and make our dataset available to facilitate further studies on plant vitality in horticultural production systems.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Junker-Frohn, Laura Verena
|0 P:(DE-Juel1)168454
|b 1
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 2
700 1 _ |a Ellenberger, Jan
|0 0000-0003-3615-8822
|b 3
700 1 _ |a Jaenicke, Hannah
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Whitney, Cory
|0 0000-0003-4988-4583
|b 5
700 1 _ |a Luedeling, Eike
|0 0000-0002-7316-3631
|b 6
700 1 _ |a Tiede-Arlt, Peter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
773 _ _ |a 10.1016/j.scienta.2021.110546
|g Vol. 291, p. 110546 -
|0 PERI:(DE-600)2016351-4
|p 110546 -
|t Scientia horticulturae
|v 291
|y 2022
|x 0304-4238
856 4 _ |u https://juser.fz-juelich.de/record/894927/files/1-s2.0-S0304423821006531-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894927
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168454
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-15
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI HORTIC-AMSTERDAM : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21