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A B S T R A C T   

Ornamental heather (Calluna vulgaris) production is characterized by high risks such as occurrence of fungal 
diseases and plant losses. Given the general absence of formal research on this economically important pro-
duction system, farmers depend on their own approaches to assess plant vitality. We provide a reproducible, 
affordable and transparent workflow for assessing ornamental plant vitality with spectroscopy data. We use 
hyperspectral imaging as a non-invasive alternative for monitoring plant performance by combining the long- 
term experience of experts with hyperspectral images taken with a portable hyperspectral camera. We tested 
a custom-made setup deployed in a horticultural production facility and screened thousands of heather plants 
over a period of 14 weeks during their development from cuttings to young plants under production conditions. 
The vitality of shoots and roots was classified by experts for comparison with spectral signatures of shoot tips of 
healthy and stressed plants. To identify wavelengths that allow distinguishing between healthy and stressed 
heather plants, we evaluated the datasets using Partial Least Squares regression. Reflectance in the green 
(519–575 nm) and red-edge (712–718 nm) region of the spectrum was identified as most important for classi-
fying plants as healthy or stressed. We transferred the trained Partial Least Squares regression model to inde-
pendent test data obtained on a different date, correctly classifying 98.1% of the heather plants. The setup we 
describe here is adjustable and can be used to measure different plant species. We identify challenges in data 
evaluation, point out promising evaluation approaches, and make our dataset available to facilitate further 
studies on plant vitality in horticultural production systems.   

1. Introduction 

Producers and retailers of ornamental plants have to produce plants 
of high quality, in order to be competitive in the marketplace (Gullino 
and Garibaldi, 2007). Fungal pathogens are a major risk factor in the 
quality of ornamental plants (Ruett et al., 2020b; Srivastava et al., 
2018). Optimized disease management and pathogen detection ap-
proaches could reduce this risk and increase the stability of production 
(Daughtrey and Benson, 2005). Bud-flowering heathers (Calluna vulgaris 
L.) are ornamental plants of considerable economic importance 

(Borchert et al., 2012, 2009) that face a high risk of fungal infection. The 
market value of heather plants is thus strongly influenced by farmers’ 
decisions on management measures that affect infections and product 
quality (Ruett et al., 2020b). Heather plants must be diligently moni-
tored to ensure early detection of abiotic and biotic stresses. Although it 
can be time-consuming and require highly skilled employees, intensified 
monitoring has been identified as a promising optimization strategy in 
commercial heather production (Ruett et al., 2020b). 

Non-invasive sensor technology has been proposed for early detec-
tion of abiotic (Lowe et al., 2017) and biotic stress symptoms on plants 
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(Bauriegel et al., 2011). One of the greatest advantages of these 
sensor-based monitoring approaches is their capacity to allow 
non-destructive real-time measurements (Rascher et al., 2011) and their 
potential for the detection of plant-pathogen interactions (Mahlein et al., 
2019). In ornamental plant production, non-invasive monitoring tech-
nologies are not yet established, but have the potential to contribute to 
or even replace time-consuming and costly manual assessments by 
experts. 

Sensors can collect accurate information about current plant per-
formance (Bohnenkamp et al., 2019), which allows improved assess-
ment of plant vitality (Knauer et al., 2017). For instance, multispectral 
cameras have been shown to detect tulip virus diseases with a level of 
accuracy that was comparable to that of human experts (Polder et al., 
2014). Red, green, blue (RGB) image analysis enabled successful rust 
detection on Canadian goldenrod (Wijekoon et al., 2008). Thermal 
sensors proved applicable for the early detection of downy mildew on 
roses, via detection of increased leaf temperature (Gomez, 2014). Op-
tical sensors commonly applied in plant science cover the spectral range 
from the visible (VIS) to near infrared radiation (NIR) (400–1000 nm) 
(Lowe et al., 2017). Hyperspectral imaging in the VIS/NIR region using 
hyperspectral sensors has been shown to be a suitable method for 
detecting plant stress earlier than the naked eye of experts (Behmann 
et al., 2014). Hyperspectral sensors are particularly promising tools for 
optimized monitoring, since they allow detailed assessment of plant 
health status and monitoring of changes in plant physiology (Mahlein, 
2016). Hyperspectral sensors have also been shown to detect the water 
status and chlorophyll content of sunflower leaves (Neto et al., 2017), 
powdery mildew on barley canopy (Behmann et al., 2018) and bacterial 
contamination of spinach leaves (Teena et al., 2013). 

Due to these capabilities, hyperspectral sensors have high potential 
for early detection of stress and thus improved timing of plant protection 
procedures (Kuska and Mahlein, 2018). In commercial heather pro-
duction, such sensor tools have not yet been applied. 

Hyperspectral imaging of detached heather shoots under controlled 
illumination conditions have been shown to allow for a precise assess-
ment of their photosynthetic pigment and anthocyanin content (Mac 
Arthur and Malthus, 2012). Similarly, canopy-level spectral reflectance 
measurements of heather moorlands enabled the non-invasive deter-
mination of leaf pigments (Nichol and Grace, 2010), and RGB-images 
taken by unmanned aerial vehicles (UAVs) have been used to map 
flowering phenology of heathland ecosystems (Neumann et al., 2020). 
However, the potential of hyperspectral approaches to monitor risk 
factors in commercial heather production has not yet been evaluated. 

Here, we explore the potential of non-invasive hyperspectral sensor 
technology for continuous evaluation of plant vitality over time. The aim 
of our study was to provide a reproducible high-throughput measure-
ment design, accompanied by a detailed description of all data pro-
cessing steps, including a Partial Least Squares regression (PLSR) based 
sensitivity analysis to identify the most suitable wavelengths for stress 
detection in heathers. We developed a novel setup with a hyperspectral 
sensor, which was used for weekly imaging of 3276 heather plants. In 
addition, we used a high-resolution camera to take photographs of the 
heather plants. These datasets were used to test whether spectral mea-
surements of heather plants contain useful information about the plants’ 
vitality status. All related models and data are published open–access for 
further attempts at classification (Ruett et al., 2020a). The novel 
approach of hyperspectral monitoring in commercial heather produc-
tion outlined here may be adapted for other plant production lines and 
thus contribute to the development of efficient sensor-based vitality 
monitoring approaches that facilitate plant health management by 
farmers. 

2. Materials and methods 

In order to produce vigorous plants, heather producers use stock 
plants, from which vegetative clones are cut and planted into specialized 

trays. Farmers try to compensate for likely plant losses by planting 
~10% more cuttings than the number of plants that are needed to fulfill 
their production targets. Depending on the variety, plant losses vary 
greatly, with losses up to 30% or more that can threaten the operation 
and contractual obligations of a farm. Because of the high risk of plant 
losses during the initial cultivation phase, we focused our analysis on 
this stage. 

2.1. Plant material and growing conditions 

The experiment was carried out in a commercial production system 
for ornamental heather plants (Europlant Canders GmbH, Straelen, 
Germany). All analyses were applied to heather plants of the variety 
‘Sanne’ (Beautyladies®, Edens Creations, Oldenbroek, Netherlands). A 
total of 3276 cuttings were planted into 12 trays (273 cuttings each) in 
Baltic peat with a pH of 4 and an electrical conductivity (EC) of 0.1 mS 
cm− 1. Plants were cultivated in greenhouses (mean temperature of 
15.8 ◦C, with a standard deviation of 6.4 ◦C; mean relative humidity: 
82.5%, with a standard deviation of 16.9%) from 19 March 2019 until 
25 June 2019 under commercial growing conditions following the 
farm’s standard crop management practices. 

2.2. Experimental layout and weekly measurement protocol 

Hyperspectral and RGB images were taken nearly simultaneously to 
gather a dataset combining expert assessment of heather performance 
and hyperspectral images of the respective plants. Hyperspectral data 
were acquired with a hyperspectral imaging sensor device, and plant 
status was documented photographically with a digital single-lens reflex 
camera (Fig. 1). 

The measurements were taken once a week over a period of 14 weeks 
from 26 March to 18 June 2019, covering plant development between 
the time the cuttings were planted and the young plant stage. Plant 
positions were recorded as tray (1–12), columns (A–U) and rows (1–13). 

2.3. RGB imaging and expert assessment 

We took the RGB images immediately after the hyperspectral imag-
ing. For acquiring RGB image data with high spatial resolution, a Nikon 
D7500 camera (Nikon GmbH, Düsseldorf, Germany; Fig. 1) equipped 
with a 35 mm standard lens (Nikon GmbH, Düsseldorf, Germany) was 
mounted on a tripod (Manfrotto Vitec Imaging Solutions, Cassola, Italy) 
with a height of 101 cm above the plant samples. The setting allowed a 
resolution of 230 × 230 pixels per plant plot (2 x 2 cm) and a total of 273 
plant plots per RGB image. A halogen lamp with 220 W and 5600/3200 
K (ARRI AG, Munich, Germany) was used for homogeneous illumination 
of the experimental RGB imaging setup. The angle of the halogen lamp 
was set to 30◦ with a distance of 162 cm to the tray surface. 

RGB images of all trays on all sampling dates were evaluated by two 
heather experts, who classified all shoots according to their perceived 
vitality. The heather experts focused their visual assessment on vitality 
traits such as shoot color, leaf structure, canopy density, and plant size. 
Expert #1 was a specialist in ornamental plant cultivation, and Expert 
#2 was an extension officer for local heather farmers. Both experts had 
more than 20 years of experience in heather cultivation. Experts were 
asked to pay particular attention to fungal disease symptoms, which 
often occur in heather cultivation, but which were unfortunately not 
detected in our study. Experts compared their classifications, adjusting 
and harmonizing their judgments to classify each plant. For each mea-
surement day, experts identified ‘Healthy’, ‘Dead’, and ‘Shoot Stress’ 
plants (Table 1). On the pricking (transplanting) day (25 June 2019), 
experts identified 17 plants that were excluded from further cultivation 
due to insufficient rooting. Although the experts showed great expertise, 
we cannot take the experts’ classification as absolute truth, since visual 
assessment of images can also lead to errors. Nevertheless, this approach 
was the most promising to incorporate long-term experiences from the 
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practice of heather production into our study. 

2.4. Hyperspectral imaging setup 

The portable hyperspectral camera ‘Specim IQ’ (Specim Spectral 
Imaging Ltd., Oulu, Finland) was used to capture hyperspectral images 
(HS images). The HS sensor captures 204 spectral bands at wavelengths 
ranging from 397.32 to 1003.58 nm. 

We designed an experimental hyperspectral imaging setup that 
allowed us to record image data from plants under controlled condi-
tions. Our custom-made setup was constructed using aluminum tubes to 
mount the sensor above a standard particle board, on which sample 
trays could be placed. During measurements, the room was kept dark, 
with all incident light blocked. Two halogen lamps (500 W and 3200 K, 
Bresser GmbH, Rhede, Germany) with aluminum reflectors were 
installed on top of the setup to illuminate the samples in the VIS/NIR 
wavelength range. The halogen lamps were equipped with light diffusers 
to ensure homogeneous lighting of the whole sample tray (the full set-up 
is described in Table S1). We optimized conditions for data acquisition 
by adjusting the positions of sensor, tray surface and light source 
(Fig. 2). Each image covered an area of 512 × 512 pixels containing 36 
cuttings on 17 x 17 cm. The hyperspectral imaging setup is adjustable to 
accommodate larger plants. 

Each hyperspectral imaging session was initiated by setting the 

integration time of the HS sensor to 30 ms. An uncalibrated 10 x 10 cm 
Restan white reference standard (Image Engineering, Frechen, Ger-
many) was used to calibrate the HS sensor at the beginning of each 

Fig. 1. Experimental layout and protocol for weekly measurements. Twelve trays with 273 plants each were photographed using a Nikon D7500 camera and imaged 
using the ‘Specim IQ’ hyperspectral imaging push-broom sensor. Output data from the vitality classification and from processed hyperspectral images are available as 
open access data (Ruett et al., 2020a). 

Table 1 
Expert assessment of health status of initially 3276 heather plants from one week 
after planting cuttings to pricking (transplanting) of young plants. One plant 
disappeared on day 14 and another plant on day 28 after planting, reducing the 
final plant number to 3274.  

Days after planting Healthy Dead Shoot Stress 

7 3265 0 10 
14* 3274 0 1 
21 3267 0 8 
28* 3250 0 24 
35 3226 0 48 
42 3173 1 100 
49 3191 3 80 
56 3247 5 22 
63 3259 5 10 
84 3257 5 12 

* The two plants that disappeared may have been removed from the greenhouse 
by birds that sometimes snatch young heather plants for building nests. 

Fig. 2. Overview of the hyperspectral imaging setup using the Specim IQ 
sensor, two halogen lamps and two diffusors mounted on an aluminum frame 
(A), and conceptual drawing of the measurement setup (B). 
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measurement day. The Restan white reference standard was used for 
spectral calibration. As the Restan standard was too small to fill the 
entire sensor image and thus not suitable for the spatial correction of 
heterogeneities, we additionally measured a white photo cardboard 
(folia paper Max Bringmann KG, Wendelstein, Germany) (70 x 50 cm) at 
the beginning and at the end of each measuring day in the same position 
where we had positioned the tray with plant cuttings before (see Fig. 2). 
The white photo cardboard is hereafter referred to as reference sheet and 
the uncalibrated Restan white reference standard as white reference 
standard. Capturing the reflectance of such a reference sheet allows for 
the correction of spectral, spatial, and temporal variation in illumination 
conditions during the measurement. 

2.5. Establishing a reference sheet to correct for spatial variation in 
illumination 

A white reference covering the complete image area is essential for 
the HS image processing to correct for spatial variability in illumination 
conditions. We established a method to correct for spatial variation in 
illumination conditions using a white photo cardboard as reference 
sheet, after confirming that it had homogeneous spectral reflectance 
properties. Spectral reflectance was measured at six different positions 
with an ‘ASD FieldSpec 4’ point spectroradiometer (Analytical Spectral 
Devices, PANalytical B.V., Boulder, CO, USA) to test for spatial homo-
geneity of reflectance. At each position, ten measurements were recor-
ded and averaged to reduce noise. The spectral reflectance of the 
reference sheet was very homogeneous with a mean of 87.3% and a 
standard deviation of 2.1%. For the uncalibrated Restan white reference 
standard the reflection was slightly lower (mean of 82.5%) and even 
showed greater variation (standard deviation of 2.8%) than the refer-
ence sheet. 

We then compared both measurements with the spectral properties 
of a calibrated 95% Zenith Polymer white reference standard (Spher-
eOptics GmbH, Herrsching, Germany) to precisely determine the spec-
tral properties of the reference sheet and the white reference standard. 
The reflectance of the white reference standard varied between 80 and 
87% in the spectral range of interest (450–900 nm). The reflectance of 
the reference sheet was, at 80–100%, consistently higher than that of the 
white reference standard. The spatial homogeneity and generally high 
reflectance of the reference sheet indicated that it was well suited to 
compute wavelength-specific correction factors for each spatial pixel in 
the HS images with the additional benefit of being more applicable 
under commercial conditions compared to a calibrated or uncalibrated 
white reference standard. Computed wavelength-specific correction 
factors were applied to the images of the reference sheet in the data 
processing procedure, which were then used for the processing of raw 
heather images. We were thus able to correct for spatial heterogeneity in 
illumination conditions and to apply spectral correction when calcu-
lating the spectral reflectance of heather plants. 

2.6. Hyperspectral image processing 

Hyperspectral data were processed in the R programming language 
(R Development Core Team, 2021). The package caTools (Tuszynski, 
2020) was used to load spectral raw data into the R environment. To 
correct for spatial heterogeneity in illumination, raw data of the first 
hyperspectral reference sheet measurements were multiplied with the 
correction factors determined from the spectral measurements of the 
photo cardboard in the laboratory (cf. 2.5.). Then we applied a Gaussian 
filter from the package EBImage (Pau et al., 2010) with a kernel size of 3 
pixels to reduce the pixel-to-pixel variability (noise) in the first hyper-
spectral reference sheet measurement. Due to the homogeneous surface 
of the reference sheet we detected little noise, all of which was removed 
by the filter. The same procedure was applied for the second hyper-
spectral imaging of the reference sheet after each measurement. We 
determined the relative differences between the recorded data from the 

first and second hyperspectral imaging in the wavelength region of 
450–900 nm (mean relative difference: 7%, with standard deviation of 
2.4%). The similarity of both measurements was used as an indicator for 
stable illumination conditions over the measurement period of 5 and 6 h 
during each measurement day. We then calculated the mean of the two 
reference sheet measurements to generate a white reference measure-
ment (averaged reference sheet image), which was used in the further 
processing of the hyperspectral imaging of heather cuttings. This pro-
cedure was applied to the data of each measurement to correct for the 
spatial variation in illumination. As a next step, we subtracted the Dark 
Frame file, which is an image that the camera takes with the shutter 
closed to determine the Dark Current of the camera. The result was 
divided by the difference of the averaged reference sheet image and the 
averaged Dark Current of the reference sheet image to obtain reflec-
tance. Fig. 3 illustrates the process of transferring data from raw digital 
numbers (DNs) to spectral reflectance (see the R script in S1). 

To illustrate spectral signatures of the final processed data files, we 
manually defined pixels of sample plants as the regions of interest (ROI) 
within the HS image using the image processing software ENVI 4.7 
(Exelis VIS, Boulder, CO, USA). We selected three to six central pixels on 
the shoot tips of each plant. Then we used the ‘Grow’ function in ENVI to 
automatically include shoot tip pixels with similar reflectance. Pixel 
numbers were increased until a minimum of 100 pixels per ROI were 
marked, excluding background and border pixels (mixed pixels) from 
the evaluation (Fig. 4). Spectral reflectance of the ROI was averaged and 
used for data analysis. 

2.7. Identification of relevant wavelengths for classification 

Partial Least Squares regression (PLSR) was applied to classify plants 
as healthy or stressed based on their average spectral signatures of the 
total ROI. We used hyperspectral images of 100 healthy and 100 stressed 
plants on day 42 after planting to train the algorithm. A sensitivity 
analysis revealed the relative importance of spectral reflectance at each 
wavelength for classification (Variable Importance in the Projection, 
VIP). A five-fold cross validation helped us to overcome potential 
inaccuracies related to training Machine Learning (ML) algorithms on a 
rather small training dataset (Hastie et al., 2009). We tested the trained 
algorithm on a second dataset containing 80 stressed plants and 80 
randomly selected healthy neighboring plants that were measured 49 
days after planting, resulting in a total of 160 observations for testing. 
The analysis was carried out using the ‘caret’ (Classification And 
Regression Training) (Kuhn, 2020) package for R and a comprehensive 
guide for code development (Pierobon, 2018). The PLSR code, the 
training dataset and the test dataset are accessible online (Ruett et al., 
2020a). 

3. Results 

We screened the performance of 3276 heather plants over 14 weeks 
from cutting to young plant stage. During this time, 187 plants showed 
shoot stress symptoms, 5 died, and 17 plants showed insufficient root-
ing, with only 5 of them also showing shoot stress symptoms. In total, 
5.7% of the plants showed stress symptoms. 

3.1. Hyperspectral reflectance data annotated with vitality scores 

To compare the spectral reflectance of ornamental heather plants 
with different stress symptoms, we chose five plants from one of the 
sample trays that differed in vitality based on the expert assessment 
(Fig. 5). 

All plants were initially classified as healthy on day 35 after planting, 
but four plants showed signs of shoot or root stress classified as ‘Tem-
porary Shoot Stress’, ‘Dead’, ‘Shoot Stress’, and ‘Root + Shoot Stress’ 
(Fig. 5). ‘Healthy’ plants showed a typical spectrum with a green peak 
around 550 nm and high reflectance in the NIR region from 750 to 900 
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nm. ‘Temporary Shoot Stress’ was associated with a minor reduction of 
reflectance in the NIR region. The spectral reflectance of the ‘Dead’ plant 
did not show the typical green peak and featured a broader range of 
spectral reflectance values in the NIR region compared to ‘Healthy’ 
plants. ‘Shoot Stress’ and ‘Root + Shoot Stress’ produced a similar 
spectral curve over the same time period, with a lower green peak 
compared to ‘Healthy’ plants at the end of the experiment. ‘Root + Shoot 
Stress’ led to a slightly higher green peak compared to ‘Shoot Stress’. 
Stress also affected plant development, with ‘Healthy’ plants being 
larger and without signs of the reddish leaf color that was associated 
with ‘Dead’ plants, based on photographs taken on day 63 after planting. 

3.2. Classification and most important spectral regions 

We applied PLSR to classify healthy and stressed heather plants. We 
identified the most important wavelengths contributing to classification 
using variable importance in the projection (VIP) (Fig. 6). 

Normalized reflectance of training data reveals higher spectral 
reflectance of healthy plants in the green and NIR regions of the spec-
trum, while only minor differences in reflection occur in the blue and red 
to red-edge region (Fig. 6A). The pattern of VIP scores is mostly in line 
with visual assessment of the spectra: the most important parts of the 
spectra for discriminating between healthy and stressed plants are 
located in the green region from 519 to 575 nm of the spectrum. VIP 

Fig. 3. Illustration of the data processing procedure to compensate for spatial heterogeneity in illumination conditions using a reference sheet. For each mea-
surement day, the raw images of the reference sheets taken by the HS sensor were used to correct for spatial variation in illumination conditions of the hyperspectral 
images of trays with heather cuttings. Reflectance data is used for further analyses to detect variation between plants. Data processing started with raw images of the 
reference sheets obtained by the HS sensor. Reference sheet images and heather images were then passed through different processing steps. The final outputs of the 
processing procedure were a set of spatially and spectrally corrected reflectance data. 

Fig. 4. RGB image of heather plants (A) and their counterpart HS images (B). The selected ROI shows green pixels for the plant classified as healthy and red pixels for 
the plant classified as stressed on day 63 after planting. For illustration of HS images, we selected the following spectral bands to set the RGB color space: R = 539.75 
nm, G = 525.10 nm, B = 616.34 nm. 
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scores also show high importance in the red-edge region between 712 
and 718 nm. Red light has a minor contribution to health classification 
while the contribution of blue light is negligible (Fig. 6B). When 
applying the model to the training data, we achieved an accuracy of 
97.5% in discriminating between healthy and stressed heathers. Model 
coefficients reveal that relatively high reflectance of green light from 
519 to 575 nm and low reflection in the red-edge region from 712 to 718 
nm are characteristic of healthy heather plants and most important for 
classification (Fig. 6C). Validating the model on test data, we achieved 
even slightly higher accuracy of 98.1%, with only three out of 80 plants 
labeled as healthy by experts being incorrectly classified as stressed 
based on their reflectance, while all 80 stressed plants were correctly 
classified as stressed (Fig. 6D). 

4. Discussion 

Automated screening of ornamental plants is of rising interest 
(Polder et al., 2014), as monitoring plant quality can support opera-
tional decisions (Parsons et al., 2009). Highly reliable and precise 
methods are needed to establish automated screening processes focusing 
on stress and disease detection (Mahlein et al., 2018). In heather pro-
duction, plants are frequently assessed visually by experts to detect 
stress and diseases. However, manual classification and interpretation 
by humans is a complex task (Laskin and McDermid, 2016), with as-
sessments being strongly dependent on experience (Giuffrida et al., 
2018). More importantly, expert assessments are time-consuming and 
costly and thus limited in the number of plants that can be covered 
(Kuska et al., 2015). Optical sensors have been shown to allow esti-
mating the nitrogen and chlorophyll content of the ornamental plants 
Chrysanthemum (Bracke et al., 2019) and Justicia brandegeana (Frei-
denreich et al., 2019) at the leaf and canopy level. We used a hyper-
spectral sensor to image plants in commercial heather production and 

tested its suitability to identify plants that were classified as stressed by 
human experts. Automated quality evaluation of ornamental plants 
using suitable sensors and data processing pipelines might have the 
potential to complement existing monitoring strategies. 

4.1. Interpretation of hyperspectral reflectance data annotated with 
vitality scores 

The quality of ornamental plants strongly depends on shoot vitality, 
root number, and root function (Druege, 2020). The spectral signatures 
of ‘Dead’, ‘Shoot Stress’ and ‘Root + Shoot Stress’ show a minor 
reduction in the green peak compared to ‘Healthy’ and ‘Temporary 
Shoot Stress’ that can be related to the slightly browner shoot color 
observed for stressed shoots by naked-eye observation compared to the 
bright green shoot color for healthy shoots (e.g. RGB images from day 63 
after planting in Fig. 5). Such changes in leaf color and spectral reflec-
tance of stressed plants can be related to a lower chlorophyll content, as 
observed for heather plants by Mac Arthur and Malthus (2012). Wang 
et al. (2020) also demonstrated that hyperspectral imaging can be used 
to assess the foliar chlorophyll content of control and 
formaldehyde-treated plants with reduced chlorophyll content in 15 
ornamental plant species. 

4.2. Classification of heather plants using PLSR 

Lohr et al. (2016, 2017) used NIR techniques to develop a model 
assessing the quality of Pelargonium and Chrysanthemum plants. In our 
study, application of a PLSR model on a spectrum from 450 to 900 nm 
facilitated identification of the most important wavelengths for classi-
fying healthy and stressed heathers (Fig. 6C), achieving correct classi-
fication of 98.1% of test data (Fig. 6D). We detected important 
wavelengths in the red-edge region (Fig. 6C) with high VIP scores from 

Fig. 5. Reflectance at wavelengths between 
450 and 900 nm of groups of heather plants 
assessed by experts, which we annotated with 
vitality scores as ‘Healthy’, ‘Temporary Shoot 
Stress’, ‘Dead’, ‘Shoot Stress’, and ‘Root +
Shoot Stress’ over three points in time from day 
42 after planting (42 DAP) to day 56 after 
planting (56 DAP). Vitality, as assessed by ex-
perts, is indicated by the background color of 
each plot (Healthy = Green, Stressed = Orange 
and Dead = Red). Plants with insufficient root 
development in the ‘Root + Shoot Stress’ group 
were identified by root assessment on the 
pricking (transplanting) date and discarded. 
The graphs illustrate the mean (black lines), a 
confidence interval (mean ± 1 standard devia-
tion; dark grey area) and the range between 
maximum (Max) and minimum (Min) (light 
grey area) of the spectral reflectance for each 
wavelength. Photographic images (bottom row) 
were taken on day 63 after planting. Red frames 
indicate the heather plants that were classified.   
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712 to 718 nm (Fig. 6B). The observed low reflectance (= a high ab-
sorption) of radiation in the red-edge range is a well-known sign of high 
chlorophyll concentrations in plant tissues (Filella and Penuelas, 1994; 
Gitelson et al., 1996; Ju et al., 2010). Radiation with wavelengths 
greater than 718 nm did not carry as much information relevant for 
discrimination of healthy and stressed plants as radiation around 550 
and 715 nm. 

Studies have shown that PLSR application on hyperspectral data sets 
is a suitable method for identifying wavelengths that are correlated with 
certain biological indicators (Luedeling et al., 2009). For example, PLSR 
has been used successfully to detect important wavelengths related to 
the canopy chlorophyll content in temperate forests in Germany 
(Hoeppner et al., 2020). The VIP score indicated the greatest potential 
for discriminating between healthy and stressed plants for spectral 
reflectance in the green spectral domain from 519 to 575 nm (Fig. 6B), 
with model coefficients specifying the most important wavelengths in 
this domain (Fig. 6C). Low reflectance of radiation in the green region at 
550 nm, as observed for stressed heather plants (Fig. 6A and D), is a 
typical sign of enhanced anthocyanin assimilation, a stress response in 

higher plants (Chalker-Scott, 1999; Merzlyak et al., 2008). Similar re-
sults were obtained by Cotrozzi and Couture (2020), who analyzed 
spectral measurements of stressed lettuce plants using PLSR and also 
identified the green spectral domain as closely related to chlorophyll 
content, confirming the importance of these spectral bands for stress 
detection. A similar trend was detected by Wilson et al. (2004), who 
identified reduced reflectance in the green spectral domain for stressed 
corn leaves that were exposed to heavy metals in comparison to healthy 
corn leaves. 

Although the overall accuracy of our classification was high (> 98 
%), we took a closer look at the three plants that were classified incor-
rectly. All three were classified as stressed based on their reflectance 
patterns, while experts labeled them as healthy, not only on the day of 
hyperspectral data acquisition, but throughout the entire production 
cycle. From a farmers’ point of view, erroneous classification of a 
healthy plant as stressed is less dangerous than the reverse case, as 
stressed plants that remain in the stand may serve as entry point for 
pathogens, potentially threatening the entire plant population. We as-
sume that machine learning workflows should be designed to classify 

Fig. 6. Hyperspectral dataset used for deriving 
the PLSR model to classify healthy (thin blue 
lines) and stressed (thin orange lines) heather 
plants in the spectral range from 450 to 900 nm. 
Bold dark blue and dark orange lines show the 
mean reflectance of healthy and stressed plants, 
respectively. (A) Reflectance data of 100 
healthy and 100 stressed plants from 42 days 
after planting were used to train the PLSR 
model. (B) The variable importance in the 
projection (VIP score = black line) illustrates 
the relative importance of spectral reflectance 
at a given wavelength for the classification as 
healthy or stressed, scaled to 100. (C) Model 
coefficients (black line) indicate correlation of 
reflectance at the respective wavelength with 
model outcome of healthy. (D) Reflectance data 
of 80 healthy and 80 stressed plants from 49 
days after planting was used to test the PLSR 
model.   
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plants with unclear signatures rather as stressed, to avoid missing mildly 
stressed plants. Such conservative approaches are in line with farmers’ 
cultivation approaches, reflecting that farmers are often risk-averse 
(Iyer et al., 2020) and may prefer models that rather err on the side of 
caution than miss potential sources of infection. 

Our results indicate that multispectral cameras capturing the 
reflectance in the green and red region of the spectrum would be just as 
suited to classify plant vitality. Multispectral cameras are preferred for 
applied approaches compared to hyperspectral cameras because of their 
lower price and lower requirements for data analysis (Grieve et al., 
2015; Mahlein et al., 2018). 

4.3. Alternative approaches to assess plant vitality in ornamental plant 
production 

Classical approaches like vegetation indices do not consider the full 
spectrum, but usually focus on just a few pre-defined wavelengths 
(Wahabzada et al., 2016). Advanced classifiers use all spectral infor-
mation and are able to deal with the high dimensionality of hyper-
spectral data to detect the most important wavelengths (Paulus and 
Mahlein, 2020). Advanced approaches like PLSR allowed classification 
of healthy and stressed heather plants with the advantage to identify the 
most important spectral regions for classification. Based on the analysis 
of all spectral information of heather plants, it appears that certain 
classifiers may classify stress symptoms more precisely than others. 
Non-linear classifiers such as Support Vector Machines (SVMs) have 
been successful in detecting abiotic stress in plants (Zhang et al., 2018), 
and they have shown better performance for water-, nitrogen-, and 
weed- stress detection in sugarbeet than other machine learning 
methods such as decision trees (Khanna et al., 2019). Such SVM ap-
proaches have shown promise in early detection of stress and diseases 
(Thomas et al., 2018), but they can be highly time-consuming in terms of 
data pre-processing (Piiroinen et al., 2017). Neural Networks (NNs) may 
overcome such limitations by directly using data without requiring 
much pre-processing (Singh et al., 2018). Golhani et al. (2018) describe 
NNs as the approach with the highest potential for precise plant diag-
nosis due to its speed and high accuracy. NNs could be more efficient 
compared to SVM approaches when applied to our heather data, if 
higher speed and classification accuracy are actually achieved. Like the 
PLSR we applied here, these tools have shown their potential to classify 
plants based on hyperspectral data by incorporating the totality of 
measured spectra. 

In recent years, Machine Learning (ML) approaches have emerged as 
powerful tools to solve classification problems using hyperspectral data, 
but there are also challenges in ML that need to be considered. Many ML 
methods can be described as black box models, because computational 
steps that detect patterns in datasets are often not well understood by 
users of such methods (Lipton, 2018). Another challenge is the collin-
earity of adjacent spectral bands in hyperspectral data (Coburn et al., 
2018). Plants’ spectral bands carry similar information that can overlap 
(as shown in Fig. 6A and D). The possibility that ML approaches may 
detect correlations in data that have no biological significance presents a 
major risk (Azodi et al., 2020). However, since the changes in reflec-
tance patterns identified for heather plants by our approach are typical 
stress responses and physiologically well described and explained in the 
literature, we are confident that we did not find artificial correlations, 
but actual explainable changes that are caused by the plants’ health 
status. 

Inclusion of feature-based procedures that consider plant structure 
may hold promise for classifying plants according to their vitality. 
Object-based image analysis techniques consider shape and texture in-
formation within groups of pixels (Blaschke, 2010; Roscher et al., 2016). 
The substantial diversity in the appearance of plants, the highly 
branched shoot structure and the small leaf size of heather present 
challenges to hyperspectral sensing, but they may hold potential for 
feature-based classification procedures. Shoots of heather plants show 

considerable variation in size and color (images in Fig. 5). Low shoot 
biomass indicates weak growth, which can indicate low vitality. 
Compared to healthy shoots, stressed shoots are smaller and therefore 
represented by fewer pixels (images in Fig. 5). Combinations of spatial 
and spectral analyses have shown promise for plant phenotyping (Beh-
mann et al., 2016). In this context, high spatial resolution in hyper-
spectral images can facilitate the analysis of shoot structures, allowing 
for a more detailed vitality assessment than hyperspectral data analysis 
alone (Behmann et al., 2016). If reduced vitality can be identified from 
shoot structure attributes of heather plants, object-based methods may 
increase the reliability of plant health assessments. The manual selection 
of pixels is a bottleneck that makes our method in its current state un-
attractive for farmers to apply. Identification of plant structure in theory 
allows to create a mask for hyperspectral data to automatically select 
pixels that are representative of a certain plant and thereby overcome 
that bottleneck. A combination of hyperspectral imaging with advanced 
evaluation methods might improve assessments of spectroscopic data 
(Mahlein et al., 2018). We anticipate that promising ML and 
feature-based methods may allow easy application of HS sensors and 
multispectral cameras for plant health status classification. 

4.4. Outlook for the use of hyperspectral sensors in ornamental plant 
production 

The hyperspectral imaging setup described in this study was 
designed for experiments at a horticultural production site. It was easy 
to use without intensive instructions, but required controlled illumina-
tion conditions. Hyperspectral images were repeatedly captured 
throughout the cultivation period to develop a hyperspectral vitality 
assessment classification. Such frequent measurements will not be 
needed for practical approaches. To establish automated plant classifi-
cation by hyper- or multispectral sensors in farming routines, sensors 
should be integrated into farm machinery that face all plants regularly, 
such as pricking (transplanting) robots. Thereby, stressed plants unlikely 
to develop to marketable plants could be automatically discarded by 
robots (Polder et al., 2014). Such frequent monitoring could save re-
sources and lower the risk of spreading fungal infections (Ruett et al., 
2020b). 

Before automated processes for stress detection with HS sensors can 
be fully applied in ornamental production practice, several challenges 
have to be investigated. Engineering challenges must be solved, such as 
how to conduct measurements under variable illumination conditions in 
the greenhouse. To facilitate fast data processing for simultaneous 
classification, the data analysis used in this study (Ruett et al., 2020a) 
must be further optimized and automated. From an economic perspec-
tive, the feasibility of applying sensors at production scales should be 
estimated by cost-benefit analyses under realistic application scenarios. 
In addition, biological variation between plant species, cultivars and 
growth stages requires determining individual classification thresholds 
for the respective plant type and growth stage of interest 

Future research should thus focus on effective stress detection al-
gorithms and low-cost sensors that are versatile enough to be applied to 
different plant species and perform under various environmental con-
ditions, to facilitate the development of sensor-based technologies to the 
point of commercial applicability. 

5. Conclusions 

In commercial heather production, as in other intensive ornamental 
plant industries, plant quality and early detection of stress are critical 
determinants of economic success. We developed a testing procedure in 
which we integrated camera and sensor technologies, the setup of which 
was deployed in a horticultural production facility, to determine 
whether spectral reflectance measurements can support classification of 
heather plants with different health status. The hyperspectral imaging 
setup was specifically designed to resolve even subtle differences in 
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reflection. Based on our experimental dataset we were able to classify 
healthy and stressed heather plants with an accuracy of 98.1% using 
PLSR. We identified reflectance in the green (519–575 nm) and red-edge 
(712–718 nm) regions as most important for classification. The setup 
and research design hold promise for experimental measurements on 
ornamental plants under controlled conditions, since they enable high- 
resolution measurements of small plant samples, clean data acquisi-
tion, and transparent data processing procedures. The resulting data set 
will be available for further studies on plant vitality. Future research 
should focus on the implementation of hyperspectral monitoring ap-
proaches in commercial plant production processes under greenhouse 
conditions. 
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