000894928 001__ 894928
000894928 005__ 20210930133542.0
000894928 0247_ $$2doi$$a10.1039/D1TA03205D
000894928 0247_ $$2ISSN$$a2050-7488
000894928 0247_ $$2ISSN$$a2050-7496
000894928 0247_ $$2Handle$$a2128/28658
000894928 0247_ $$2altmetric$$aaltmetric:108511360
000894928 0247_ $$2WOS$$aWOS:000670013400001
000894928 037__ $$aFZJ-2021-03487
000894928 082__ $$a530
000894928 1001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b0$$eCorresponding author
000894928 245__ $$aCarbonate formation lowers the electrocatalytic activity of perovskite oxides for water electrolysis
000894928 260__ $$aLondon $$bRSC$$c2021
000894928 3367_ $$2DRIVER$$aarticle
000894928 3367_ $$2DataCite$$aOutput Types/Journal article
000894928 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631860952_28775
000894928 3367_ $$2BibTeX$$aARTICLE
000894928 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894928 3367_ $$00$$2EndNote$$aJournal Article
000894928 520__ $$aThe study of oxide electrocatalysts is often complicated by the formation of complex and unknown surface species as well as the interaction between the catalysts and common support materials. Because unknown surface species may result from air exposure, we developed a clean transfer system for the air-free electrochemical investigation of epitaxial thin films fabricated under typical surface science conditions. LaNiO3 electrocatalysts exposed to ambient air exhibit a lower activity towards the oxygen evolution reaction than samples probed without air exposure. We demonstrate that this decrease in activity is connected to an alteration of the chemical environment of the electrocatalytically active sites through carbonate formation on exposure to CO2. Our study therefore shows that (1) the effects of air exposure must be considered for transition metal oxide catalysts and (2) that for the perovskite oxide LaNiO3 the clean surface is more active than the air-exposed surface.
000894928 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894928 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894928 7001_ $$00000-0001-5330-8031$$aLiang, Allen Yu-Lun$$b1
000894928 7001_ $$00000-0002-9447-1502$$aTrstenjak, Urška$$b2
000894928 7001_ $$0P:(DE-HGF)0$$aLu, Qiyang$$b3
000894928 7001_ $$0P:(DE-Juel1)131022$$aWaser, Rainer$$b4
000894928 7001_ $$00000-0003-4965-4147$$aMefford, J. Tyler$$b5
000894928 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b6
000894928 7001_ $$0P:(DE-Juel1)164137$$aNemšák, Slavomír$$b7
000894928 7001_ $$00000-0002-8997-6629$$aChueh, William C.$$b8
000894928 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D1TA03205D$$gp. 10.1039.D1TA03205D$$n35$$p19940-19948 $$tJournal of materials chemistry / A$$v9$$x2050-7496$$y2021
000894928 8564_ $$uhttps://juser.fz-juelich.de/record/894928/files/d1ta03205d.pdf$$yOpenAccess
000894928 909CO $$ooai:juser.fz-juelich.de:894928$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894928 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b0$$kFZJ
000894928 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000894928 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b6$$kFZJ
000894928 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b7$$kFZJ
000894928 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894928 9141_ $$y2021
000894928 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894928 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000894928 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000894928 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2019$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000894928 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2019$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000894928 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000894928 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000894928 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000894928 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000894928 980__ $$ajournal
000894928 980__ $$aVDB
000894928 980__ $$aUNRESTRICTED
000894928 980__ $$aI:(DE-Juel1)PGI-7-20110106
000894928 980__ $$aI:(DE-82)080009_20140620
000894928 9801_ $$aFullTexts