001     894928
005     20210930133542.0
024 7 _ |a 10.1039/D1TA03205D
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/28658
|2 Handle
024 7 _ |a altmetric:108511360
|2 altmetric
024 7 _ |a WOS:000670013400001
|2 WOS
037 _ _ |a FZJ-2021-03487
082 _ _ |a 530
100 1 _ |a Baeumer, Christoph
|0 P:(DE-Juel1)159254
|b 0
|e Corresponding author
245 _ _ |a Carbonate formation lowers the electrocatalytic activity of perovskite oxides for water electrolysis
260 _ _ |a London
|c 2021
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1631860952_28775
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The study of oxide electrocatalysts is often complicated by the formation of complex and unknown surface species as well as the interaction between the catalysts and common support materials. Because unknown surface species may result from air exposure, we developed a clean transfer system for the air-free electrochemical investigation of epitaxial thin films fabricated under typical surface science conditions. LaNiO3 electrocatalysts exposed to ambient air exhibit a lower activity towards the oxygen evolution reaction than samples probed without air exposure. We demonstrate that this decrease in activity is connected to an alteration of the chemical environment of the electrocatalytically active sites through carbonate formation on exposure to CO2. Our study therefore shows that (1) the effects of air exposure must be considered for transition metal oxide catalysts and (2) that for the perovskite oxide LaNiO3 the clean surface is more active than the air-exposed surface.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liang, Allen Yu-Lun
|0 0000-0001-5330-8031
|b 1
700 1 _ |a Trstenjak, Urška
|0 0000-0002-9447-1502
|b 2
700 1 _ |a Lu, Qiyang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Waser, Rainer
|0 P:(DE-Juel1)131022
|b 4
700 1 _ |a Mefford, J. Tyler
|0 0000-0003-4965-4147
|b 5
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 6
700 1 _ |a Nemšák, Slavomír
|0 P:(DE-Juel1)164137
|b 7
700 1 _ |a Chueh, William C.
|0 0000-0002-8997-6629
|b 8
773 _ _ |a 10.1039/D1TA03205D
|g p. 10.1039.D1TA03205D
|0 PERI:(DE-600)2702232-8
|n 35
|p 19940-19948
|t Journal of materials chemistry / A
|v 9
|y 2021
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/894928/files/d1ta03205d.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:894928
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164137
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21