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1Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ),
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The bosonic analogues of topological insulators have been proposed in numerous theoretical works,
but their experimental realization is still very rare, especially for spin systems. Recently, two-
dimensional (2D) honeycomb van der Waals (vdW) ferromagnets have emerged as a new platform
for topological spin excitations. Here, via a comprehensive inelastic neutron scattering study and
theoretical analysis of the spin-wave excitations, we report the realization of topological magnon
insulators in CrXTe3 (X=Si, Ge) compounds. The nontrivial nature and intrinsic tunability of
the gap opening at the magnon band-crossing Dirac points are confirmed, while the emergence of
the corresponding in-gap topological edge states is demonstrated theoretically. The realization of
topological magnon insulators with intrinsic gap-tunability in this class of remarkable 2D materials
will undoubtedly lead to new and fascinating technological applications in the domain of magnonics
and topological spintronics.

I. INTRODUCTION

Recent theoretical predictions and experimental realizations of exotic quasi-particles and topological excitations in
condensed matter have led to a tremendous research interest in topological quantum materials [1–5]. The topology
of the electronic band structure is closely linked to the Berry curvature in the k-space [6, 7], for which the spin-orbit
coupling (SOC) plays a key role. In principle, it is also possible to realize non-trivial topology in a bosonic system,
such as a system of magnonic excitations [8–18], since the band topology can be treated independently from the
statistical nature of the particles. Such topological excitations and the corresponding non-trivial in-gap edge states
are chiral and robust against disorder, it is thus believed that the emergence and manipulation of the topological
magnonic states bares a tremendous promise for future applications in magnonics and topological spintronics, such
as e.g. quantized pumping of magnons [19], spin-wave beam splitter [10], magnon waveguides [20], chiral travelling-
wave magnon amplifiers [21] and magnon-driven orbitronics [22].

However, in contrast to the case of fermionic systems, the topological excitations have been realized only in very
few bosonic systems. This is largely owing to the lack of suitable candidate materials as well as to the tremendous
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challenges in experimental probes of uncharged bosonic topological excitations, and, in particular, in a direct detec-
tion of in-gap surface/edge states. For instance, inelastic neutron scattering may be the method of choice e.g. for
disentangling topological excitation gaps, but, to directly probe the in-gap edge excitation mode is unfortunately be-
yond its reach even with the most powerful neutron instruments available nowadays. Nevertheless, since topological
magnon edge states contribute to the transverse thermal Hall conductivity, it has recently been demonstrated that
the nontrivial topological nature of the magnonic bands can be manifested experimentally by the thermal Hall effect
even in a charge-neutral spin system [23–26]. Following the pioneering study of the magnon thermal Hall effect in
the pyrochlore ferromagnet Lu2V2O7 [23, 24], the evidence for the gapped magnonic topological insulating phase was
reported in the Ising-like kagome ferromagnet Cu[1,3-bdc] under applied magnetic field via inelastic neutron scattering
[8]. The search for topological excitations in various spin systems has been intensified since then. Recently, Dirac
magnons that exhibit symmetry-protected band crossings have been observed in a three-dimensional (3D) Heisenberg
antiferromagnet Cu3TeO6 [15, 16] and in a 3D quantum XY magnet CoTiO3 [17]. Meanwhile, 2D honeycomb vdW
magnets [27–29], such as the 2D ferromagnets CrGeTe3 and Fe3GeTe2 as well as the Kitaev material α-RuCl3, have
attracted tremendous research interest owing to their fascinating physical properties. Since the recent observation of
the gapped topological excitations in ferromagnetic CrI3 [11], 2D vdW honeycomb-lattice magnets start to emerge as a
unique platform for the exploration of the topological magnonics [9, 12, 14]. In this class of materials, as schematically
shown in Fig.1(a), a topological gap can be opened at the magnon band-crossing Dirac points when a sufficiently large
SOC is present. Pronounced SOC would in turn give rise to antisymmetric or anisotropic exchange interactions − such
as the Dzyaloshinskii-Moriya (DM) [30] and Kitaev interactions − which can drive non-trivial magnonic topology.

While the current research focus of the community falls primarily on few-layer vdW heterostructures and Morié
superlattices, a variety of recently discovered quantum phenomena in bulk vdW materials − e.g. the half-integer
thermal quantum Hall effect and fractionalized Majorana fermions in α-RuCl3 [29] or topological magnetic textures
in Fe3GeTe2 [28] − clearly indicate the potential of bulk 2D vdW magnetic materials as a rich playground in topolog-
ical quantum matter research. A thorough understanding of intrinsic magnetic interactions and emergent topological
properties in single-crystal bulk samples will undoubtedly stimulate further research on monolayer, few-layer and
Morié-based counterparts. In this context, 2D vdW CrXTe3 compounds emerge as one of the very promising rep-
resentatives in this class. In fact, one would expect the existence of topological magnons in CrXTe3 similarly to
CrI3 [9, 18, 26], as long as SOC and the antisymmetric exchange interactions are strong enough in this ferromagnetic
honeycomb system. Furthermore, due to high versatility in terms of chemical composition, a range of topological
magnon insulators with intrinsic gap-tunability may be realized in CrXTe3 family. As such, the intrinsic control of
topological magnon properties, for instance, via the engineering of DM interaction, may lead to novel applications in
magnonic spintronics and quantum technology.

In this work, we present a comprehensive inelastic neutron scattering study of the spin-wave excitations in single-
crystal CrSiTe3 and CrGeTe3, which belong to a family of 2D vdW honeycomb ferromagnets. Our inelastic neutron
scattering experiments performed at low temperatures show clear dispersive magnonic bands and a well-resolved band
gap opening at the high-symmetry K points in the Brillouin zone (BZ). By fitting to experimental data within the
linear spin-wave theory (LSWT), the magnitude of exchange interactions in studied materials has been determined.
Moreover, the observed band gap opening was ascribed to the antisymmetric exchange interactions, namely the DM
interaction, and a spin Hamiltonian model including the second-nearest-neighbor (2nd-NN) DM interaction could
provide a very good description of the magnonic dispersion in CrXTe3. In line with expectations, the size of the
topological gap was found to be strongly dependent on the strength of the DM interaction that intrinsically originates
from SOC in this system. Furthermore, the Chern numbers of the magnonic bands were found to be non-zero, thus
indicating that the band gap opening is indeed topologically nontrivial and corresponding edge states could emerge
inside the gap. By assessing theoretically the magnitude of the thermal Hall effect we find that the topologically
nontrivial features could be detected in thermal transport measurements in two considered systems. Based on the
compelling evidence obtained in our inelastic neutron scattering experiments and theoretical calculations, we thus
conclude that the exotic topological magnon insulator, that is intrinsically gap-tunable, can be ideally realized in the
family of 2D vdW honeycomb ferromagnets CrXTe3.

II. RESULTS AND DISCUSSION

High-quality single crystals of CrXTe3 (X=Si, Ge) were grown by the flux method, and were carefully examined by
X-ray Laue, single-crystal X-ray and neutron diffraction. The Cr3+ ions with S = 3/2 in CrXTe3 (X=Si, Ge) occupy
an ABC stacked honeycomb lattice, as shown in Fig.1(b). Despite the presence of the Si/Ge atoms, each layer shares
a similar atomic structure to that of the chromium trihalides CrI3 [31] and CrBr3 at low temperature. All the Cr3+

ions are located in the center of the edge-shared trigonal distorted octahedra (D3d symmetry) composed of Te atoms,
as shown in Fig.1(c). Below Tc, both materials exhibit ferromagnetic order with the magnetic moments aligned along
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the c axis. As shown in Fig.S1, the magnetic susceptibilities measured with fields applied along the a and c axes clearly
show ferromagnetic phase transitions occurring at ∼33 K and ∼63 K for CrSiTe3 and CrGeTe3 respectively, with the
easy axis along the c axis. As the isothermal magnetization curves shown in Fig.S1, their magnetic moments can be
easily aligned and saturated along both the a and c axes by an application of a small magnetic field, which indicates
a small magnetic anisotropy energy in these two materials, consistent with the previous magnetization measurements
[32–35]. In addition, the ferromagnetic transitions are further confirmed by neutron diffraction and the transition
temperatures Tc are extracted from the fitting of the temperature dependent intensity of the (1,1,0) magnetic Bragg
peak. Among them, the magnetic moment direction of CrGeTe3 in the ferromagnetic phase is determined along the
c axis by polarized neutron diffraction, as shown in Fig.S2.

In Fig.2, we show the magnon spectra of CrSiTe3 along the high-symmetry directions [-1,H,0] and [H,H,3] in
the (H,K,0) reciprocal plane as well as along the [1,1,L] direction in the (H,H,L) reciprocal plane. The measured
momentum transfer Q positions in reciprocal space are shown as the black solid lines in the inset of Fig.2(c). The
measured magnon bands lie below 16 meV and show clear dispersion along all directions. As shown in Fig.2(a),
the low-energy magnon mode (referred to as “acoustic” magnon mode) emerges from the BZ center Γ point and
reaches its maximum energy with a gap opening at the M point of the in-plane BZ boundary, consistently with its
ferromagnetic nature. Along the [H,H,3] direction, in the vicinity of the K points, as shown in the Fig.2(b), a small
spin gap is faintly visible at E ≈ 9 meV. Besides, as highlighted by the white arrow in the inset of Fig.2(b), a new
branch connected to the acoustic magnon mode was observed along the BZ boundary K-M -K ′ direction although its
intensity is rather weak. From a zoom-in plot in Fig.2(g), the high-energy branch (referred to as “optical” magnon
mode) is found to be less dispersive as compared to the acoustic magnon mode, and it also seems disconnected from
the acoustic branch at K points. To further confirm whether a magnon gap is opened at the K point, the line profiles
of the constant-Q scans at two different K points are shown in Fig.2(h), where a gap opening of about 2 meV can
be clearly resolved. Subsequently, the maximum of the acoustic and the minimum of the optical magnon mode at
the K point are determined as 8.6(1) meV and 10.7(1) meV by the multi-peak fitting, respectively. Given that the
magnitude of the gap is quite large and no clear phonon modes are observed, we conclude that the magnon-phonon
hybridization is unlikely to be the origin of the observed gap opening. Instead, introducing an antisymmetric exchange
interaction, such as the DM interaction, into the spin Hamiltonian could potentially induce such a considerable gap
at the K point. As for the [1,1,L] direction, the acoustic magnon mode only extends up to 2 meV, which is much
smaller than that in the Γ -M and Γ -K directions, indicating that the coupling between vdW layers is notably weak
and that the magnon spectra are mainly dictated by the intra-layer exchange interactions.

As for the analogous CrGeTe3, whose transition temperature Tc is nearly doubled as compared to that of CrSiTe3,
we also measured its spin waves along all high-symmetry directions, and the black solid lines in the inset of Fig.3(b)
show the corresponding Q positions for the measurements. The magnon modes in the (H,K,0) reciprocal plane are
shown in Fig.3(a), where two branches, namely the acoustic and optical modes, can be easily distinguished, and the
magnon modes along [1,1,L] directions, dictated by the inter-layer exchange interactions, are shown in Fig.3(b). As
expected, the acoustic mode has a stronger dispersion than the optical mode and also emerges from the magnetic BZ
center Γ point at low energy. Except for the scale of the energy transfers, the overall feature of the magnon modes
of CrGeTe3 appears very similar to that of CrSiTe3 including the gap opening at the K point. Interestingly, the
acoustic magnon mode in the (H,K,0) plane reaches its energy maximum at around 15 meV which is nearly two times
that of CrSiTe3, but along the out-of-plane direction, the magnon mode only extends to 2.5 meV, basically the same
as in CrSiTe3. It indicates that replacing the Si atoms by heavier Ge atoms in CrXTe3 will significantly enhance
the intra-layer exchange interactions and meanwhile will have little influence on the interlayer exchange interactions.
This suggests that the exchange interactions can be tuned by nonmagnetic atoms without destroying the magnetic
network, and that the strength of SOC of non-magnetic atoms may also play an important role in the super-exchange
interactions in this vdW honeycomb ferromagnet family.

Furthermore, one can notice that the optical mode of CrGeTe3 is rather broad in energy even after taking into
consideration the instrument resolution of ∼2 meV at such energy transfer, and is quite intense, in contrast to the
situation of CrSiTe3. In fact, we find that the intensity of this optical magnon branch at the K point is about 4 times
higher than the prediction of our LSWT calculation. Given that the optical phonon mode of CrGeTe3 has a similar
energy scale [36], and that the evidence for the spin-lattice coupling in CrGeTe3 has been already reported in previous
Raman experiments [37, 38], we tend to believe that both the broadening in energy and the intensity enhancement
could be a result of possible magnon-phonon interactions. Interestingly, the phonon modes around 25 meV are indeed
mainly contributed by the magnetic atoms Cr [39], the coexistence of the phonon and magnon modes in the same
energy range may allow for a possible spectral weight transfer between them, thus leading to the observed unusual
intensity enhancement. Generally, a dynamic spin-lattice coupling can create hybridization gaps or broadening in the
magnon spectra at the intersection points of the coupled magnon and phonon modes.

Regardless of the unusual broadening of the optical branches, a gap opening at the K point is still resolvable. In
Fig.3(e)-(g), three line profiles of energy scans are extracted from the vicinity of the K point and fitted by two Gauss
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peaks to accurately determine the size of the opened gap, and the corresponding positions of momentum transfer in
reciprocal space in the measurements are marked by the black circles in Fig.(h)-(j). From Fig3.(f), a weak but clear
shoulder can be seen around 15 meV which denotes the band maximum of the acoustic mode, and subsequently the
size of the opened gap at the K point can be determined as ∼5 meV from the fitting results. We conclude that such
a large gap is unlikely to arise as a result of possible magnon-phonon coupling, since the magnon-phonon coupling
induced gap always occurs at the intersection between the magnon and phonon bands and it does not extend over the
entire BZ. It is thus expected that the gap in CrGeTe3 shares the same origin as in CrSiTe3, namely the antisymmetric
exchange interaction e.g. like the SOC-mediated DM interaction. Hence, it appears natural that a larger gap opening
in CrGeTe3 must arise from the larger SOC in the latter material when Si is replaced by heavier Ge.

In order to determine the nature of magnon bands and the underlying magnetic exchange interactions in CrXTe3
systems, we carry out LSWT calculations based on a generalized Heisenberg spin Hamiltonian including DM interac-
tion and single-ion magnetic anisotropy [40]:

H =−
∑
i<j

Jij(Si · Sj)−Azz
∑
i

(Szi )2

−
∑
i<j

Dij · (Si × Sj) ,
(1)

where Jij is the Heisenberg exchange constant between spins Si and Sj , Dij represents the vector of the DM interaction
between two magnetic ions when the inversion symmetry is broken, and Azz is the easy-axis anisotropy along the c
axis. Note that we take S = 3/2 given that the measured moment of Cr ions is extracted as ∼3 µB from the isotherm
magnetization curve shown in Fig.S1. As illustrated in Fig.1(b), we consider the 1st- and 2nd-NN Heisenberg exchange
couplings in every honeycomb plane labeled as Jab1 and Jab2, and the 1st- and 2nd-NN exchange couplings between
layers labeled as Jc1 and Jc2. From the symmetry analysis, there will be no DM interaction between the nearest
neighbors (NN), because of the space inversion. However, the space inversion symmetry is broken between the 2nd
NN, which can lead to a non-zero 2nd-NN DM interaction.

After a proper fitting process of the experimentally observed magnon spectra along the high-symmetry directions,
the best-fit values for the exchange parameters of CrSiTe3 and CrGeTe3 were extracted. As shown in Table.1, we
find that the intra-layer interactions in CrXTe3 are mainly dominated by the NN exchange couplings Jab1 which
are one order of magnitude larger than the interlayer exchange. Given the presence of sizeable interlayer exchange
interactions, it is worth noting that CrXTe3, strictly speaking, should be classified as quasi-2D spin systems. While
the direct exchange coupling between Cr ions is expected to be anti-ferromagnetic, due to the formation of Cr-Te-Cr
bonds with a bond angle of nearly 90 degrees, the NN exchange couplings among Cr ions become ferromagnetic
(J > 0) according to the Goodenough-Kanamori-Anderson rules [41]. Interestingly, although the fitting values of the
inter-layer couplings Jc1 and Jc2 are quite comparable, the magnon dispersion along [00L] direction is likely much
more sensitive to the 2nd-NN inter-layer coupling Jc2 because each Cr3+ spin has nine 2nd-NNs but only one 1st
NN. Besides, the strength of the DM interactions is fitted as |Dij | = 0.12 meV for CrSiTe3 and |Dij | = 0.32 meV
for CrGeTe3 which results in a ∼2 meV and ∼5 meV gap opening at the K points, respectively. We remark that
the magnitude of the DM interaction in CrXTe3 constitutes about 10% of Jab1 and it is quite comparable to the
value of exchange Jab2 between 2nd-NN Cr ions. From the isothermal magnetization curve at 2 K (Fig.S1), we can
extract the magneto-crystalline anisotropy energy per Cr3+, which is only 0.09 meV for CrSiTe3 and 0.02 meV for
CrGeTe3, indicating a small single-ion anisotropy in the CrXTe3 system. In terms of the small single-ion anisotropy,
as expected, we failed to determine the size of the gap at the Γ point from our energy-scan data directly, and we
used instead the quadratic fitting result 0.01 meV (shown in Fig.S5 and Fig.S6) for the anisotropy term A in the
Heisenberg-DM model.

As shown in Figs.2(d)-(f) and Figs.3(c)(d), the magnon bands of CrXTe3 calculated from the Heisenberg-DM model
are consistent with our experimentally observed spectra, taking into account a finite energy resolution. Especially in
the vicinity of the K points, the opened gap is also well described by the model. In addition, a range of constant-
energy slices near the BZ boundary are found to be in an excellent agreement with the simulation results, as shown in
Fig.S4. Moreover, the calculated spectra also reproduce the characteristic weak/strong-intensity of the magnon bands
in different BZs, except that the optical modes of CrGeTe3 are significantly enhanced by the possible hybridization
with the phonon modes, as discussed above.

The overall band dispersion is mainly determined by the ferromagnetic NN Heisenberg exchange couplings, and the
gap opening at the K points cannot be reproduced by simply adding exchange couplings with further neighbors in
the model, until an anisotropic exchange coupling term such as the DM interaction is taken into consideration. It is
known that the DM interaction acts as an effective gauge potential for magnonic states and it can open topologically
nontrivial band gaps in a magnonic system [9, 42]. Without the DM interaction, a crossing point located in the vicinity
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of K point would be present, Fig.4(a), while the gap is opened immediately as the DM interaction is introduced, with
the band gap size increasing almost linearly with the strength of the DM interaction, Fig.4(b). Overall, the contructed
Heisenberg-DM model reproduces spin waves in CrXTe3 very nicely, with one key point being that the DM interaction
in our case is not only dependent on the SOC strength of Te atoms along the Cr-Te-Cr paths, but it is also influenced
by Si/Ge atoms. The large difference of the gap size in CrXTe3 thus translates into a possibility to tune the DM
interaction by the substitution of the atoms with different SOC strength in the honeycomb center.

Interestingly, in addition to the Heisenberg-DM model, introducing the Kitaev interactions can also produce similar
spin wave spectra and induce a gap opening at the K points. If we exclude X atoms, the rest of CrXTe3 shares a
common atomic structure with the well-studied Kitaev spin liquid candidate α-RuCl3 [43], and three kinds of diamond-
shaped planes, composed of the nearest-neighbor Cr-Te-Cr bonds, are nearly orthogonal to each other. In terms of the
structure symmetry, it is possible to have an anisotropic exchange interaction between nearest neighbors, for instance,
an anisotropic Ising interaction in the local basis that consists of the normal vectors of three Cr-Te-Cr planes, as
shown in Fig.S7. The presence of the additional anisotropy can make it possible to construct the Heisenberg-Kitaev
Hamiltonian. Surprisingly, in order to match the magnetic excitations in CrXTe3, we found that the Kitaev exchange
needs to be one order of magnitude larger than the NN Heisenberg term, as shown in Table.S1. In the latter case,
the fitted Kitaev exchange parameters of CrGeTe3 are almost two times those of CrSiTe3, which is quite interesting,
since CrSiTe3 and CrGeTe3 share a similar local environment including the bond distance for NN Cr atoms. One
possible explanation would be that the sp3 hybridized orbitals of Si/Ge atoms in the honeycomb center are strongly
coupled with the p orbitals of Te atoms and subsequently strongly influence the strength of the Cr-Te-Cr super-
exchange interaction. Similar orbital hybridization effect is not rare since the super-exchange interaction mediated
by nonmagnetic ions is also proposed in inverse-trirutile compound [44] and double-perovskites [45]. In any case, if
CrXTe3 is dominated by the Kitaev interaction, then a strong in-plane anisotropy should be easily evident in the
magnetization measurements, which has never been reported. We thus conclude that the Heisenberg-Kitaev model is
not a proper model for CrXTe3. More details concerning the discussion of Heisenberg-Kitaev model are given in the
supplement.

Having determined the microscopic spin Hamiltonians for CrXTe3, we turn to the analysis of the topological
nature of the magnonic bands, and reveal theoretically the presence of a large thermal Hall effect, an unambiguous
experimental signature of topologically nontrivial in-gap edge states. Our numerical calculations confirm a nonzero
Berry curvature at the K points and also a nonzero Chern number, indicating nontrivial topology of these magnon
bands. For bulk CrXTe3, the total Chern number is determined to be −3 and +3 for the acoustic and optical magnon
bands respectively, which means there is one topological edge state at the boundary of each honeycomb layer. It is
important to note that the sign of the Chern number depends on the magnetization direction which in our case is the
z-axis. The sign of the Chern number can be changed by reversing the magnetization direction, which can be naturally
achieved at the magnetic domain walls in CrXTe3 acting as perfect waveguides for the topological edge states. In
addition to the bulk system, we also investigated the topological properties of the monolayer system, where we observe
an almost identical BZ Berry curvature distribution and predict only one acoustic branch with Chern number −1 and
one optical branch with Chern number +1 for the magnon bands. Due to the lack of any interlayer interactions, the
magnon bands in the monolayer are not split as in the bulk, but the topological properties are sustained as long as the
intra-layer DM interaction exists. To simplify the calculation, we use the monolayer system to study the edge states.
The edge states of zigzag and armchair nanoribbons with the projections of the bulk states are shown together in
Fig.4(c) and (d), where one can observe that the edges on the two sides of a nanoribbon hold their own exclusive edge
states but with opposite propagation direction. The role of the DM interaction here is similar to that of strong SOC in
graphene-like systems which turns them into a quantum spin Hall insulator [2], and so CrXTe3 can be also considered
as a bosonic version of the well-known topological insulator state. Correspondingly, the presence of nontrivial edge
states can contribute to the transverse thermal Hall conductivity to yield the topological thermal Hall effect when a
longitudinal temperature gradient and out-of-plane magnetic field are applied. As shown in Fig.4(e), our numerical
estimates indicate that the thermal Hall conductivity generated by the edge states can reach the order of 10−4 W/Km,
which is large enough to be observed in experiment. This motivates the future confirmation of topological thermal
Hall effect in CrXTe3 from thermal transport experiments.

In summary, we carried out a very comprehensive inelastic neutron scattering study of the spin-wave excitations
on the ferromagnetic honeycomb magnets CrXTe3. Our data shows a clear gap opening in the magnon bands at the
K points, with the gap size of about 2 meV and 5 meV for CrSiTe3 and CrGeTe3, respectively. The magnon band
dispersion in CrXTe3 can be described very well by either the Heisenberg-DM model or Heisenberg-Kitaev model. The
gap opening can be ascribed to the asymmetric DM interaction with an out-of-plane DM vector or Kitaev interactions.
However, due to the very small magnetic anisotropy observed in CrXTe3, the Heisenberg-DM model, in which the
isotropic Heisenberg exchange dominates, is perceived as the proper model for these materials. The magnon spectra
of CrXTe3 are successfully reproduced by using the LSWT calculations. The gap size was found to be proportional to
the strength of the DM interaction. The strength of the DM interaction is also strongly dependent on the SOC of the
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nonmagnetic Si/Ge atoms that are located at the honeycomb center. Furthermore, our numerical calculations predict
the nontrivial topological nature of the magnon bands gap at the K points, and also reveal the existence of topological
edge states at the sample boundaries and domain walls. In addition, we also calculated the reference values for the
expected thermal Hall conductivity that may arise from the topological magnon edge states, which can be measured
in future thermal transport experiments. Based on our experimental and theoretical results, we propose that CrSiTe3
and CrGeTe3 present an ideal platform to realize topological magnon insulators, in which the nontrivial magnon gaps
can be intrinsically tuned by varying the SOC of nonmagnetic ions. In contrast to CrI3, the substitution of Si/Ge in
CrXTe3 system using a wide range of nonmagnetic ions like C, Si, Ge, Sn, Pb, Ga [46–50] can in principle change the
balance of the exchange interactions and thus enable the manipulation of the topological magnon gap size, leading to
novel magnetic properties rooting in complex magnonic topology.

III. MATERIALS AND METHODS

High-quality single crystals of CrXTe3 (X=Si,Ge) were grown by the flux method at the sample preparation labo-
ratory of JCNS-MLZ in Garching. Starting materials of Cr, X and Te were mixed in an Ar-filled glove box at a molar
ratio of Cr:X:Te=1:1:10. The mixture was placed in an alumina crucible, which was then sealed in an evacuated
quartz tube. The tube was heated up to 930 ◦C (X=Ge) or 1030◦C (X=Si) in 4 hours and sustained there for 10
hours. Then the tube was slowly cooled down to 600 ◦C with a cooling speed of 3 ◦C/h followed by separating the
crystals from the Te flux by centrifuging. Shiny and sizable crystals with hexagonal natural edges were obtained.

Single-crystal X-ray diffraction (XRD) was performed at room temperature with an incident wavelength of 1.54
Å (Cu-Kα) on a Bruker D2-Phaser X-ray diffractometer. By using a SQUID magnetometer (Quantum Design), the
temperature and field dependence of the magnetization of CrSiTe3 and CrGeTe3 were measured along both the a and
c axes respectively. The magnetic susceptibility was measured from 2 K to 300 K with both zero-field-cooling (ZFC)
and field-cooling (FC) conditions for some selected single crystals. The isothermal magnetization (M − H) curves
were also measured in a sweeping field from −50 to 50 kOe at 2 K.

The polarized neutron diffraction measurement on single-crystal CrGeTe3 was carried out at the cold-neutron
polarized spectrometer DNS at MLZ (with λi = 4.2 Å) at T = 4 K. Two-dimensional Q-maps in the (H,K,0) and
(H,H,L) planes of reciprocal space at three different polarization modes were measured at 4 K. For the measurements
of spin-wave excitations, we co-aligned 2 pieces of large single crystals with a total mass of 1.3 g for CrSiTe3, and more
than 100 pieces with a total mass of about 1.4 g for CrGeTe3. All the inelastic neutron scattering experiments were
performed by using a range of thermal and cold neutron triple-axis spectrometers, including PUMA at MLZ, FLEXX
[51] at HZB, IN12, IN8 and IN22 at ILL. Both the (H,H,L) and (H,K,0) oriented samples were prepared for each of
CrSiTe3 and CrGeTe3. The low energy magnon dispersion along [0,0,L] was measured at the cold neutron triple-axis
at IN12 (with a fixed kf = 1.7 Å−1 and 2.8 Å−1) and at FLEXX (with kf = 1.55 Å−1). The magnon dispersions
along [H,H,0] and [H,0,0] were measured at the thermal neutron triple-axis spectrometers IN8 and PUMA (both with
a fixed kf = 2.662 Å−1). All the magnon dispersion data was collected at the base temperature of T = 2 K.

IV. SUPPLEMENTARY MATERIALS

Detailed magnetic properties of CrSiTe3 and CrGeTe3.
Detailed analysis of the polarized neutron scattering data for CrGeTe3.
Detailed analysis of the inelastic neutron scattering data: constant-energy mapping for CrSiTe3, and the determination
of the magnon gap at the Brillouin zone center for CrXTe3.
Detailed descriptions of the spin Hamiltonian for the Heisenberg-DM model and Heisenberg-Kitaev model.
The calculation of the magnon band topology for CrXTe3.
Fig. S1. XRD and magnetic properties of CrSiTe3 and CrGeTe3.
Fig. S2. Polarized neutron scattering on CrGeTe3.
Fig. S3. Mosaic width (i.e. FWHM) of the co-aligned CrXTe3 samples.
Fig. S4. Constant-energy mappings of the magnon spectra of CrSiTe3 in the (H,K,0) scattering plane measured at
the thermal neutron triple-axis spectrometer PUMA.
Fig. S5. The magnon spectra of CrGeTe3 measured at the cold neutron triple-axis spectrometer IN12.
Fig. S6. Cosine-function curve fittings of the respective magnon band dispersion of CrSiTe3 and CrGeTe3 along the
[1,1,L] direction.
Fig. S7. Schematic plot for the Kitaev model.
Fig. S8. Comparison of the calculated magnon spectra with different models.
Fig. S9. The Berry curvature in the Kx −Ky plane.
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Fig. S10. Chern numbers of magnon bands.
Fig. S11. Calculated transverse thermal Hall conductivity.
References[17, 18, 23–27, 32, 34, 35, 40, 43, 47, 48, 52–60]

V. ACKNOWLEDGMENTS

Acknowledgements: We acknowledge Susanne Mayr for assistance with the crystal orientation. This work is based
on the experiments performed at DNS, PUMA, IN8, IN12, IN22 and FLEXX neutron instruments. Funding: F.Z.
acknowledges the funding support from the HGF–OCPC Postdoctoral Program. Y.M. gratefully acknowledges the
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Fig. 1. Schematic of the trivial and topological magnon bands, and of the magnetic and atomic
structures of CrXTe3. (a) Schematic of the band dispersion for a Dirac magnon, a topological magnon and
a trivial magnon. (b) Magnetic structure of CrSiTe3. In the ab-plane, the Cr atoms form a honeycomb lattice
represented by the dark blue spheres and green solid lines. The magnetic moments are represented by red arrows.
The first and second nearest-neighbor exchange interactions in intra- and inter-planes are represented by purple, green,
black and yellow dash lines respectively. (c) View perpendicular to the ab-plane showing the honeycomb network of
CrSiTe3. The honeycomb network is caged by the edge-sharing octahedra composed of Te atoms and Si-Si dimers
located in the center. The light blue arrows represent the bond directions of the DM interactions between the second
nearest-neighbor Cr atoms, and all the DM vectors share a common sign along the c axis.

unit (meV) Jab1 Jab2 Jc1 Jc2 ~Dij

CrSiTe3 1.49 0.15 0.07 0.06 (0, 0, 0.12)

CrGeTe3 2.73 0.33 0.10 0.08 (0, 0, 0.32)

TABLE I. Spin Hamiltonian parameters. The values of exchange interactions including the DM interactions are listed
together for both CrSiTe3 and CrGeTe3. The value of the 2nd-NN DM-vector was chosen to reproduce the experimental
spin-wave dispersion. The units of the parameters indicated here is meV. The single-ion anisotropy is fixed to 0.01 meV.
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Fig. 2. Spin-wave excitations in CrSiTe3. (a-c) Energy- and momentum-resolved neutron scattering inten-
sity maps of magnons in CrSiTe3 along the high-symmetry directions measured at the thermal neutron triple-axis
spectrometer PUMA and IN8, and at the cold neutron triple-axis spectrometer IN12, respectively. The black solid
lines are the calculated magnon dispersion curves based on the parameters of Heisenberg-DM model presented in this
paper. The inset in (b) is a contrast adjusted plot for the dashed rectangle part to make the acoustic branch easy to
see. The inset in (c) shows the exact scan paths in the reciprocal space. (d-f) Calculated magnon spectra intensity
maps for (a-c) respectively. The calculated spectra are convolved with an energy resolution of 1 meV to compare
with the experimental data. (g) Zoom-in plot of the magnon spectra from (b) near the K points. (h) Energy scans of
magnon density of states at the K points. The solid lines are the two-peak Gauss fitting results, and the fitted peak
positions and error bars are indicated by the vertical dash lines with gray shadow.
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Fig. 3. Spin-wave excitations in CrGeTe3. (a,b) Energy- and momentum-resolved neutron scattering intensity
maps of magnon in CrGeTe3 along the high-symmetry directions measured at IN8 and IN12, respectively. Black solid
lines are the calculated magnon dispersion curves. Inset in (b) shows the projected BZ with high-symmetry points
and the scan paths in the experiments. (c,d) The corresponding calculated magnon spectra intensity maps for (a,b)
by using the 2nd-NN DM interaction model. The calculated spectra are convolved with an energy resolution of 1
meV to compare with experimental data. (e-g) The line profiles of constant-Q energy scan at the positions of 1,2,3
marked by the green arrows in (a) near the K point Q = (5/3,2/3,0). The solid lines are the multi-peak Gauss fitting
results. The peak positions and the errors are indicated respectively by the dash lines and the gray shadows, the
corresponding energy resolutions are represented by the black horizontal bar with caps. (h-j) The actual Q positions
of the Cut 1,2,3 are marked by black circles with center dots in the reciprocal space. The red solid lines are the BZ
boundaries.
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Fig. 4. The impact of the DM interaction on the magnon dispersion. The magnon dispersions of CrSiTe3
with different DM interaction strength are compared in (a). (b) The relationships between the opened global band
gap and the strength of the DM interaction, the red and blue filled circles correspond to the values extracted from the
magnon bands. (c,d) The edge states of the monolayer CrSiTe3 for the respective zigzag and armchair nanoribbon.
The color scale represents the weight of the magnonic wave function along the slab. (e) Temperature dependence of
the topological thermal Hall conductivity of CrSiTe3 and of CrGeTe3 in the ferromagnetic ordered phases.
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VI. DATA ANALYSIS

A. X-ray diffraction, magnetic properties and neutron scattering

The lattice parameter c = 20.681(75) Å for CrSiTe3 and c = 20.603(99) Å for CrGeTe3 at room temperature
extracted from XRD (in Fig.S1[(a),(b)]) is quite consistent with the previous results [52–54]. From the temperature
dependence of the magnetic susceptibility (shown in Fig.S1[(c),(d)]), the ferromagnetic transitions can clearly be
observed at Tc ≈ 33 K for CrSiTe3 and Tc ≈ 63 K for CrGeTe3, respectively. In the insets of Fig.S1[(c),(d)], the
isothermal magnetization (M −H) curves show small magnetic anisotropies, and the magneto-crystalline anisotropy
is extracted as 0.09 meV for CrSiTe3 and 0.02 meV for CrGeTe3, respectively. In Fig.S1[(e),(f)], the phase transition
is also observed from the temperature dependence of the (1,1,0) magnetic Bragg peak for both CrSiTe3 and CrGeTe3.
The temperature dependence of the order parameter were fitted with the power law equation I = I0 +A(1− T

TN
)2β ,

the fitted transition temperatures are about 33 K for CrSiTe3 and 63 K for CrGeTe3, which are in a good agreement
with our magnetization results. The critical exponents are extracted as β = 0.151(3) for CrSiTe3 and β = 0.201(7)
for CrGeTe3.

With polarized neutron diffraction, we can easily determine the directions of the ordered magnetic moments,
because the sign of polarized neutrons can only be flipped when there exists a non-zero component of magnetic
moments perpendicular to the polarization of the neutron beam P and the scattering wave vector Q. Due to a
favorable situation related to the ferromagnetic domains in this sample, no neutron depolarization was noticed for
the polarized measurements in the ferromagnetic state. As shown in Fig.S2, 2D Q-maps in the (H,K,0) and (H,H,L)
planes of reciprocal space at three different polarization modes were measured at 4 K. The diffraction patterns of
x and y polarization for the respective spin-flip and non-spin-flip channels (Fig.S2(a-d)) are basically the same in
the (H,K,0) scattering plane, and all the nuclear and magnetic diffraction peaks relocated on the same position in
the center of Brillouin zone, which indicates its ferromagnetic character and that the ferromagnetic moment has a
non-zero component along the z directions at least. For the z polarization, there are no diffraction peaks observed in
the spin-flip channel but the same diffraction pattern as in the previous xy polarizations of the non-spin-flip channel,
as shown in Fig.S2[(e),(f)], which confirms that the ordered ferromagnetic moments are aligned exclusively along the
c axis. The absence of the (0,0,3n) magnetic reflections in the x spin-flip channel compared to the x non-spin-flip
channel (shown in Fig.S2(g)), also indicates the magnetic moments are aligned along the c axis.

For the measurements of spin-wave excitations, the full width at half maximum of CrSiTe3 is much smaller than
that of CrGeTe3. For CrSiTe3 single crystals, due to the large size and thickness, we used only 2 single crystals and
the FWHM of the co-aligned sample turns out to be only 1.4◦ in the rocking curve scan at IN8, as shown in Fig.S3(a).
However, for CrGeTe3 single crystals, their usual dimension is about 2 mm × 2 mm × 0.5 mm, so we co-aligned
about 0.8 g samples on 5 horizontal aluminum plates and about 0.6 g samples on 3 vertical aluminum plates for the
experiments with (H,K,0) and (H,H,L) as scattering planes, respectively. The corresponding FWHM of the (H,K,0)
orientated CrGeTe3 sample is about 3.52◦ (shown in Fig.S3(b)).

B. Constant-energy mapping around the K points

To gain more information about the the magnon band dispersion in the vicinity of the K points, we have also
very carefully measured the constant-energy scan contour maps in the (H,K,0) reciprocal plane with various energy
transfers, as shown in Fig.S4(a-h). The energy transfers were selected from 7.5 meV to 11 meV with a step of 0.5
meV to cover the whole range of the gap opening at the K points. In Fig.S4(q), a 2D reciprocal space map with BZ
boundaries and high-symmetry points in (H,K,0) is shown, and the measured regions of the constant-energy slices in
Q space are indicated by the light blue hexagons. However, the spectral function (or dynamic structure factor) is
strongly dependent on the momentum transfer, causing intensity enhancement or suppression in some specific parts of
the contour maps. According to the previously calculated spectral function for the honeycomb ferromagnet with DM
interactions, the magnon shows a shorter lifetime in the acoustic mode on one side of the K point and, in the optical
mode on the opposite side of K, which is consistent with the antisymmetric intensity distribution that we observed
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in Fig.S4(a-h). From the constant-energy slices, the 2D projected magnon “cone” is observed to become weaker and
smaller towards the gap energy, and become larger again by increasing energy transfers. In betweens, for example at
E = 9.5 meV, only discrete spots with weak intensity can be seen at the K points, as shown in Fig.S4(e).

Although the existence of a gap opening is almost clear by observing the intensity change of the constant-energy
contours, it is not rigorous and convincing enough, given that similar constant-energy contours were also observed
in the topological Dirac magnon material CoTiO3 where there exists no gap at the K points [17]. To exclude the
involvement of the Dirac magnon, further detailed constant-Q energy scans at various K points are quite necessary.
In Fig.S4(r), the energy-scan line profiles were extracted at three K points [highlighted by green circles in Fig.S4(q)]
with different momentum transfers, and all of them show two peaks located at around 8.7 meV and 10.7 meV, which
clearly indicate a 2 meV gap opening at around 9.5 meV. Due to the limited energy resolution of ∼ 1.3 meV that
is also comparable to the gap size, the in-gap intensity is not exactly zero in our experimental configuration. By
applying a convolution of the instrument energy resolution, similar constant-energy patterns including the discrete
spot-shaped contours at E = 9.5 meV can be very well reproduced in our simulations, as shown in Fig.S4(i-p).

C. Determination of the magnon gap at the Brillouin zone center

We tried to measure the spin wave gap at the Γ point by using one of the best cold neutron triple-axis spectrometers,
IN12, but we failed although the energy resolution and background level were quite good. Unlike CrI3, the anisotropy
in both CrSiTe3 and CrGeTe3 is very small [32, 34, 35], it is really hard to resolve it directly from our low energy scan
data. To give out a reference value of the spin wave gap, we carefully measured the low energy magnon bands along
the high-symmetry directions at 2 K. In the color map of Fig.S5(a), the magnon bands of CrGeTe3 below 15 meV
were measured at IN12 with kf = 1.7 Å−1, and the magnon bands above 15 meV were measured with kf = 2.8 Å−1.
Fig.S5(b) shows the corresponding calculated dispersion curves of the same Q path as in Fig.S5(a) by using the fitted
exchange parameters in the Heisenberg-DM model. In the vicinity of the Γ point at low energy, the magnon bands
dispersions along Γ −M and Γ −K can be both fitted by the parabolic equation under the long-wave approximation.
Here, for the quadratic fitting, the Gauss fitted peak postions of the measured magnon bands below 5 meV were
included, as shown in the red rectangular frame of Fig.S5(c). The fitting results were shown in the form of the energy
as a linear function of the squared moment transfer Q, and the fitted gap size at the Γ point is about 0.0097 meV but
with a very large error of 0.183 meV, which indicates the gap of CrGeTe3 is rather small and really hard to resolve
by triple-axis spectroscopy.

For the same reason, the magnon band dispersions of CrSiTe3 and CrGeTe3 along the [0 0 L] direction were
also fitted to gain a reference value of the spin wave gap at the Γ point, as shown in Fig.S6. Given the magnetic
structure is ferromagnetic in both the intralayers and also the vdW interlayers, we can treat every three ABC-stacked
ferromagnetic Cr3+ as a single imaginary spin with S = 3/2 × 3, so the spin wave dispersion along the c axis that
is concerned here can be approximately described by using a one-dimensional ferromagnetic model with an effective
nearest-neighborer ferromagnetic exchange interaction J̃ :

H =− J̃
∑
i

(Sxi S
x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1)−Azz

∑
i

(Szi )2, (S1)

where ∆ and Azz denote the exchange and single-ion anisotropy, respectively. In the case ∆ = 1, the exchange
interaction reduces to the isotropic Heisenberg interaction. At low temperatures (kBT � J̃), the perturbations of the
ground state are very small, so we can ignore the high-order terms and just keep the ground-state energy term and
quadratic terms in bosonic operators. Finally, the ferromagnetic magnon dispersion can be wrote as

εk =2J̃S(∆− cos(kc)) + 2AzzS, (S2)

where c is the lattice constant along the z direction. The gap at the Brillouin zone center Γ point is expressed as
2J̃S(∆−1)+2AzzS. The band dispersions in Fig.S6 were fitted by using Eq.S2, and the effective exchange interactions

J̃ were determined as 0.11(1) and 0.16(2) meV for CrSiTe3 and CrGeTe3 respectively. From the fitting results, we
failed to get the anisotropy gap size because of the extremely small magnetic anisotropy in CrXTe3. To give an idea
of how small the single-ion anisotropy is, we set ∆ = 1, namely Heisenberg interaction, and the single-ion anisotropy
is estimated as Azz < 0.0018 meV for CrSiTe3 and Azz < 0.020 meV for CrGeTe3. The small single-ion anisotropy
can basically be neglected, compared to the large in-plane exchange interactions Jab. However, for the overall magnon
band fitting (e.g. in Fig.S5(b)), we symbolically set the single-ion anisotropy A as 0.01 meV for the Hamiltonian in
Eq.S1.
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VII. SPIN HARMILTONIAN

A. Heisenberg-DM model

For the CrXTe3, although the DM interaction will cancel because of the space inversion between the nearest-
neighbor Cr atoms, the second nearest-neighbor interaction, the space inversion symmetry is actually broken in a
honeycomb lattice, leading to a non-zero DM interaction. Although the Te atoms may appear to have the strongest
SOC in CrXTe3, the magnitude of the DM interaction is more likely determined by the competition of one Cr atom
and two Si/Ge atoms on two sides of the second nearest-neighbor Cr-Cr bond. Here we use LSWT to calculate the
magnon spectra of CrXTe3, starting from the generalized Heisenberg model [40],

H =
∑
i<j

S†i ĴijSj , (S3)

where the interaction tensor between the lattice sites i and j

Ĵij =

 Jxij Dz
ij −Dy

ij

−Dz
ij Jyij Dx

ij

Dy
ij −Dx

ij Jzij

 (S4)

includes the symmetric exchange Jij and the antisymmetric off-diagonal DM interaction terms Dij , caused by the
spin-orbit coupling. The DM interaction vector is defined as Dij = (Dx

ij , D
y
ij , D

z
ij). Based on the symmetry and the

Moriya’s rule, the direction of the DM interaction vector is determined as out of plane. Similar to earlier works [27],
we include five Heisenberg exchange interactions in total, three in the intra-layers and two between the inter-layers,
with their numerical values listed in Table I.

According to the LSWT, the Holstein-Primakoff transformation [55] is adopted for the quantum spin operators. Fol-
lowed by the Fourier transformation for the boson operators, the Hamiltonian matrix in momentum space is obtained.
Then the eigenvalue and eigenvector, namely the magnon band dispersion can be extracted through diagonalizing the
matrix. As we expected, the band opens a gap at the K point which is consistent with our experimental results.

B. Heisenberg-Kitaev model

The Kitaev interaction is introduced to understand the magnetic behaviors that are close to quantum spin liquids
in some S=1/2 honeycomb lattices with edge-sharing octahedra compounds, e.g., Na2IrO3, α−RuCl3 [43, 56]. For
the S=3/2 systems, like CrXTe3, the Kitaev-type exchange interaction may also exist, and recent theoretical works
[57] have proposed to realize the Kitaev quantum spin liquid state in CrGeTe3 by applying proper in-plane strain.
As shown in the schematic of Fig.S7(a), the nearest Cr-Cr pairs are proposed to have three bond-dependent Ising
exchange interactions in the local {αβγ} coordinate bases for the Kitaev model. For simplicity, here we first discuss
the Kitaev model in the perfect orthogonal {αβγ} coordinate bases. The Heisenberg-Kitaev Hamiltonian can be
expressed as:

H = −
∑
i<j

JijSi · Sj −
∑
〈i,j〉ν

KνSνi S
ν
j −Azz

∑
i

(Szi )2, (S5)

where the first term is the Heisenberg exchanges term and the second term represents the nearest neighbour bond-
dependent Kitaev interaction with Kα=Kβ=Kγ=K. To obtain the final magnon dispersion, the Kitaev term in
the Hamiltonian expressed by the local {αβγ} basis can be converted into the global {xyz} coordinate in advance
to apply the Holstein-Primakoff transformation and Fourier transformation, and then the total Hamiltonian can be
rewrote in momentum space by bosonic operators. According to the linear-spin-wave theory, we can ignore the high-
order terms and just keep the ground-state energy term and the linear terms which contain the magnon relation.
By fitting the experimental results with the model, we can easily obtain the exchange parameters. Comparing to
the previous Heisenberg-DM model, the DM term is just replaced by the Kitaev term, and also up to five isotropic
Heisenberg interactions are included for CrXTe3. To make the calculated magnon bands consistent with the measured
band dispersion, the optimized Kitaev interaction parameters are quite large comparing to their nearest-neighbor
Heisenberg interaction for both CrSiTe3 and CrGeTe3. The corresponding exchange parameters for CrXTe3 are listed
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in Table.S1. As shown in Fig.S8, the magnon band of CrSiTe3 reproduced by the Heisenberg-Kitaev model is quite
similar to the result of the pure Heisenberg model but opens a gap in the vicinity of the K point like that of the
Heisenberg-DM model.

However, it is important to realize that the {αβγ} basis is not perfectly orthogonal in CrXTe3, the interangle
between the local {αβγ} basis vectors is about 93.6◦ and 100.1◦ for CrSiTe3 and CrGeTe3 respectively. As shown
in the schematic picture of Fig.S7(b), the local {αβγ} basis vectors tilt from the z axis towards the xy plane by an

angle θ, and only when θ = θ0 ≈ 54.74◦, namely tan θ =
√

2, the {αβγ} basis becomes perfectly orthogonal[58].
Here in our paper, we take θ as 57.28◦ and 62.26◦ from the experimental refined atomic structures of CrSiTe3 and
CrGeTe3 respectively. The imperfection of θ will yield non-zero off-diagonal components when the exchange matrix
is converted into the orthogonal {α′β′γ′} basis and eventually induce an extra exchange anisotropy along the global
z axis. Three general Kitaev interaction matrices in a local {αβγ} basis can be expressed as:

Kα

0
0

 ,

0
Kβ

0

 ,

0
0
Kγ

 , (S6)

and in the orthogonal {α′β′γ′} basis, they can be rewritten as:

A2 AB AB
AB B2 B2

AB B2 B2

 · Kα

C2
,

B2 AB B2

AB A2 AB
B2 AB B2

 · Kβ

C2
,

B2 B2 AB
B2 B2 AB
AB AB A2

 · Kγ

C2
, (S7)

where A = 2 sin θ cos θ0 + cos θ sin θ0, B = − sin(θ − θ0) and C = 3 sin θ0 cos θ0. Especially when θ = θ0, then we
have B = 0 and A = C, the Eq.S7 is immediately degenerated into the simple form the same as the Eq.S6. However
for CrSiTe3 and CrGeTe3 here, the off-diagonal term is non-zero due to θ 6= θ0, hence for example one of the Kitaev
matrices will representatively be

 0.998 −0.032 −0.032
−0.032 0.001 0.001
−0.032 0.001 0.001

 ·Kα,

 0.983 −0.092 −0.092
−0.092 0.009 0.009
−0.092 0.009 0.009

 ·Kα. (S8)

In the orthogonal {α′β′γ′} basis, the general Heisenberg-Kitaev Hamiltonian can be expressed as:

H =−
∑
i<j

J̃ijSi · Sj −
∑
〈i,j〉ν

K̃νSνi S
ν
j −

∑
〈i,j〉µν

Γ1

(
Sµi S

ν
j + Sνi S

µ
j

)
−

∑
〈i,j〉λµν

Γ2

(
Sλi S

µ
j + Sµi S

λ
j + Sλi S

ν
j + Sνi S

λ
j

)
−Azz

∑
i

(Szi )
2

,
(S9)

where Γ1 = B2

C2K, Γ2 = AB
C2 K, K̃ν = (A2−B2)

C2 K and J̃ij = Jij + B2

C2K for the nearest-neighbor exchange interactions,

J̃ij = Jij for others, and (λ, µ, ν) is any permutation of orthogonal basis vector’s indexes (α′, β′, γ′).

Although the non-zero off-diagonal terms in the matrix looks small, but here they will create an quite large negative
component (e.g. CrSiTe3: -0.7 meV, CrGeTe3: -5.7meV ) on the magnon gap at the Brillouin center and make the
energy eigenvalues become imaginary unless an extra considerable anisotropy can be introduced to cancel it out. If
so, either the anisotropy of the exchange interaction or the single ion anisotropy should be very strong. However,
as we known from the magnetization and the critical behavior, the magnetic anisotropy in CrXTe3 is quite small
actually. Even if the magnon dispersion can be reproduced very well when the bond-dependent Kitaev interactions
are assumed to be perfectly orthogonal, it is still difficult to understand the huge difference of the strength of the Kitaev
interaction between CrSiTe3 and CrGeTe3, since the Kitaev interaction mainly arise from the heavy ligands (namely,
Te of CrXTe3) [57, 59]. We can not completely exclude the existence of the Kitaev interaction, but comparing to the
previous DM model, the Heisenberg-Kitaev model is unlikely a proper model to describe the exchange interactions in
this system at least.
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VIII. MAGNON BAND TOPOLOGY

A. Berry curvature and Chern number

Formulating semiclassical equations of motion for magnon wave packets [60], which include the anomalous velocity
leads to a non-zero Berry curvature. We generally define the Berry curvature field associated with the nth magnon
band as

Ωnk = i
∑
m 6=n

〈Ψnk|∂kH(k)|Ψmk〉 × 〈Ψmk|∂kH(k)|Ψnk〉
(εnk − εmk)2

, (S10)

where ∂kH(k) denotes the gradient of the Hamiltonian in momentum space. εmk and εnk are the magnonic eigenvalues.
Based on this Berry curvature, we can classify the topology of the nth magnon branch using Chern number:

C(P ) =
1

2π

∫
P

Ω(k) · ñ dP, (S11)

where P is a two-dimensional slice of the BZ and ñ is its normal vector. In our calculation, the ñ is selected
perpendicular to the xy plane. As the lowest three branches cross with each other, the lower three branches are sum
together.

The Berry curvature distribution of bulk CrGeTe3 in the first BZ is shown in Fig.S9(a,b). The Chern number of
the lowest three branches is −3 and the Chern number of the highest three branches is +3. If we ignore the interlayer
interaction, we can easily use the monolayer system to characterize the topological properties of the system, and the
corresponding Berry curvature is shown in Fig.S9(c,d) with the Chern number −1 for the lowest branches. From the
figure, almost the same Berry curvature distribution can be obtained. Compared to the intralayer interaction, the
interlayer interaction is weaker and the DM interaction only exist among intralayer. In CrXTe3, each layer contributes
one optical and acoustic branches. The interlayer interaction splits the three degenerate bands but influence little on
their topological properties.

B. Edge states and thermal Hall conductivity

To simplify the calculation, the monolayer CrXTe3 is utilized to study the edge states. Here, the color scale of the
bands in the main text Fig.4 is calculated based on the following equation:

LW (k, j) =
∑
i

φi∗(k, j)φi(k, j)(Riz − 0.5), (S12)

where k is the reciprocal space vector, j denotes the band index, i numbers the magnetic atom, and Riz represents
the normalized position for atom i along the z-axis. φi(k, j) is the components of the right eigenstates of j at the
magnetic atom i.

Given the nontrivial topology, the topological magnon edge states can contribute to the transverse thermal Hall
voltage under an applied longitudinal temperature gradient [18, 24–26, 60], namely the topological thermal Hall effect.

The energy-dependent contribution to the ij’th Cartesian component of the thermal Hall conductivity tensor κ̂ can
be calculated as

Jab1 Jab2 Jc1 Jc2 K

CrSiTe3 0.4 0.2 0.08 0.065 3

CrGeTe3 0.24 0.42 0.1 0.08 6.5

TABLE S1. The parameters of the Heisenberg exchange interactions and the Kitaev interactions are listed together for
CrSiTe3 and CrGeTe3. The local {αβγ} basis is assumed perfectly orthogonal and the single-ion anisotropy is fixed to 0.01
meV. The unit of the parameters is meV.
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κij(ε) =
k2BT

(2π)3~
∑
n

∫
BZ

δ(εnk − ε)C2(fBn ) Ωijn (k) dk, (S13)

where n enumerates the magnon bands, fBn is the Bose-Einstein distribution function, which can be expressed as
fBn = (eεnk/kBT − 1)−1, and C2 is given by

C2(x) = (1 + x)

(
ln

1 + x

x

)2

− ln2 x− 2Li2(−x), (S14)

with Li2 denoting the dilogarithm function. In our calculation, only the result of transverse thermal Hall conductivity
κxy is shown, as the κxz and κyz is zero. The transverse thermal Hall conductivity of the system is then defined as
κxy = limµ→∞ κxyµ , where κxyµ =

∫ µ
0
κxy(ε) dε is the cumulative thermal Hall conductivity.

From the experimental results, we know that the respective Curie temperature of CrSiTe3 and CrGeTe3 are around
30 K and 60 K. The calculated temperature-dependent and energy-dependent thermal Hall conductivity are shown
in Fig.S11. For both materials, κxy is significant enhancement in the energy region close to the band gap, which
can be attributed to the distribution of the Berry curvature around the K point. In low temperature only these
”topologically-trivial” states are excited according to the Bose-Einstein distribution, leading to the zero platform at
very low temperature. Then conductivity increases as the temperature increases. The effect of the DM interaction is
shown in Fig.S11(e), from which we can observe that the thermal Hall conductivity increases with the enhancement
of the DM Interaction.

The predicted thermal Hall conductivity for CrGeTe3 reaches the order of 10−4 W/Km, which is large enough to be
observed in experiment. Furthermore, the DM interaction value is determined by the strength of spin-orbit coupling.
Compared to CrGeTe3 and CrSiTe3, CrSnTe3 and CrPbTe3 should have even stronger spin-orbit coupling and some
recent theoretical studies have demonstrated that the corresponding monolayer system could have a ferromagnetic
state with higher Curie temperatures [47, 48]. These materials are thus more likely to have even bigger thermal Hall
conductivity than Lu2V2O7 [23, 24].
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FIG. S1. X-ray diffraction and magnetic properties of CrXTe3. (a,b) X-ray diffraction of single-crystal CrSiTe3 and
CrGeTe3 at 300 K. The insets are the sample pictures and the corresponding X-ray Laue pattern of the (H,K,0) reciprocal
plane. (c,d) ZFC/FC magnetization curves measured under applied magnetic fields along the c and a axes. Insets show
the corresponding magnetization as a function of field at 2 K for H ‖ c and H ‖ ab. (e,f) Temperature dependence of the
(1,1,0) magnetic Bragg peak intensity of CrSiTe3 and CrGeTe3 measured at DNS, MLZ. The solid lines are the fittings of the
experimental data in the vicinity of the ferromagnetic transition.

FIG. S2. Polarized elastic neutron scattering maps. (a-f) Q Maps in the (H,K,0) scattering plane and (g,h) in the
(H,H,L) scattering plane measured on CrGeTe3 at DNS. Red solid lines are the Brillouin zone boundaries.
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FIG. S3. Mosaic width of the co-aligned CrXTe3 samples. (a),(b) Rocking curve scans of the (1,1,0) nuclear reflection
at about 80 K show the alignment quality of CrSiTe3 (with 2 pieces) and CrGeTe3 (with more than 100 pieces) respectively.
The insets are the corresponding pictures of the samples measured at IN8.

FIG. S4. Spin-wave excitations of CrSiTe3 in the (H,K,0) scattering plane. (a-h) Constant-energy mappings of the
magnon spectra of CrSiTe3 in the (H,K,0) scattering plane measured at the thermal neutron triple-axis spectrometer PUMA.
The energies of the constant-energy mappings are chosen to cover the whole energy scale of the opened gaps at the K points
with an energy step of 0.5 meV. The black solid lines denote the boundaries of the 2D BZs. The dark gray dots represent the
actually measured Q points. (i-p) Calculated constant-energy mappings using the parameters of the 2nd-NN DM interaction
model in this paper. The calculated spectra are convolved with the estimated instrument energy resolution of 1.5 meV. Areas
inside the white dashed lines corresponds to the Q range for the experimental data. (q) Schematics of the projected 2D BZs.
The BZ center Γ points and 3 selected K points are denoted by the red dots and green circles, respectively. The light blue
hexagon is a schematic for the corresponding Q positions for the experimental data in (a-h). (r) Constant-Q energy scans of
the magnon spectra at 3 different K points in (q). The solid lines are the multi-peak Gauss fitting. The dash lines and grey
shadow represent the averaged energy positions and error bars for the magnon bands at the K points.
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FIG. S5. The low-energy magnon branches of CrGeTe3. (a) The magnon spectra of CrGeTe3 measured at the cold
neutron triple-axis spectrometer IN12 (with a fixed kf = 1.7 Å−1 and 2.8 Å−1). The solid lines are the calculated magnon
dispersion curves. The isolated crosses and stars are the fitted peak positions of various constant-Q and constant-E scans. (b)
The corresponding caculated magnon spectra by using the 2nd-NN DM interaction model. (c) Enlarged plot of the low energy
excitations in (a). (d) Quadratic fitting of the magnon band for the low energy parts. Only the peak positions inside the red
rectangle in (c) are included in the fitting.

FIG. S6. Fitting of the magnon dispersion along the [1,1,L] direction. (a),(b) Cosine-function curve fittings of the
respective magnon band dispersion of CrSiTe3 and CrGeTe3 along the [1,1,L] direction. The green dashed lines in (a,b) are
the fittings according to the data collected from IN12 (kf = 1.7 Å−1). The red dashed line in (b) is a combined fittings with
the restriction in Fig.S5(d) according to all the data of CrGeTe3 collected from IN12 and FLEXX. The light shading zones
represent the confidence interval with a width of 2 standard errors.
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FIG. S7. The proposed Kitaev model for CrXTe3. (a) Schematic plot for the Kitaev model. The red, blue and green
rhombus planes marked with perpendicular arrows are almost orthogonal to each other, which are used to represent 3 different
bonds of the Kitaev model. (b) The configuration of the local {αβγ} coordinate in the global {xyz} coordinate.

FIG. S8. Comparison of the calculated magnon spectra with different models. (a) Magnon spectra calculated by
using the Heisenberg with 2nd-NN DM interaction model. Dash lines are the calculated magnon spectra at the BZ boundaries,
and the intensity maps are the convoluted results with energy resolution of 1 meV. (b) Magnon spectra calculated by using a
simple Heisenberg model. (c) Magnon spectra calculated by using the Heisenberg with a modified Kitaev interaction model.
(d) Comparison of the magnon band dispersion near the Dirac point between all the models in (a-c).

FIG. S9. The calculated Berry curvature in the Kx − Ky plane. The Berry curvature for the lowest three magnon
branches of bulk CrSiTe3 (a) and CrGeTe3 (b). The Berry curvature for the lowest branch of monolayer CrSiTe3 (c) and
CrGeTe3 (d) in the first Brillouin zone. The Chern number is -3 for (a,b) and -1 for (c,d).
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FIG. S10. Chern numbers of magnon bands. (a) The Chern number along the [0,0,L] direction. The sum of the Chern
numbers are -3 and 3 for the lowest and highest three bands respectively. (b) The influence of the magnitude of the DM
interaction on the Chern numbers of the bands.

FIG. S11. The calculated transverse thermal Hall conductivity (κxy) of CrGeTe3 and CrSiTe3. The temperature
dependence (a, b) and energy dependence (c, d) of the thermal Hall conductivity of CrGeTe3 and CrSiTe3. The κxy with the
function of Dz for CrGeTe3 at 60K is shown in (e).
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