000894955 001__ 894955
000894955 005__ 20240625095128.0
000894955 0247_ $$2doi$$a10.1021/acs.jpclett.1c02135
000894955 0247_ $$2Handle$$a2128/29211
000894955 0247_ $$2altmetric$$aaltmetric:114075759
000894955 0247_ $$2pmid$$apmid:34555284
000894955 0247_ $$2WOS$$aWOS:000707046300006
000894955 037__ $$aFZJ-2021-03496
000894955 082__ $$a530
000894955 1001_ $$0P:(DE-HGF)0$$aParrinello, Michele$$b0$$eCorresponding author
000894955 245__ $$aTargeted Free Energy Perturbation Revisited: Accurate Free Energies from Mapped Reference Potentials
000894955 260__ $$aWashington, DC$$bACS$$c2021
000894955 3367_ $$2DRIVER$$aarticle
000894955 3367_ $$2DataCite$$aOutput Types/Journal article
000894955 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638254090_17592
000894955 3367_ $$2BibTeX$$aARTICLE
000894955 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894955 3367_ $$00$$2EndNote$$aJournal Article
000894955 520__ $$aWe present an approach that extends the theory of targeted free energy perturbation (TFEP) to calculate free energy differences and free energy surfaces at an accurate quantum mechanical level of theory from a cheaper reference potential. The convergence is accelerated by a mapping function that increases the overlap between the target and the reference distributions. Building on recent work, we show that this map can be learned with a normalizing flow neural network, without requiring simulations with the expensive target potential but only a small number of single-point calculations, and, crucially, avoiding the systematic error that was found previously. We validate the method by numerically evaluating the free energy difference in a system with a double-well potential and by describing the free energy landscape of a simple chemical reaction in the gas phase.
000894955 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000894955 536__ $$0G:(GEPRIS)291198853$$aDFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - $$c291198853$$x1
000894955 588__ $$aDataset connected to DataCite
000894955 7001_ $$0P:(DE-Juel1)180791$$aRizzi, Andrea$$b1$$ufzj
000894955 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b2$$eCorresponding author
000894955 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.1c02135$$gVol. 12, no. 39, p. 9449 - 9454$$n39$$p9449–9454$$tThe journal of physical chemistry letters$$v12$$x1948-7185$$y2021
000894955 8564_ $$uhttps://juser.fz-juelich.de/record/894955/files/Invoice_APC600249130.pdf
000894955 8564_ $$uhttps://juser.fz-juelich.de/record/894955/files/Rizzi-etal-JPCL-2021.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000894955 8564_ $$uhttps://juser.fz-juelich.de/record/894955/files/acs.jpclett.1c02135.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000894955 8767_ $$8APC600249130$$92021-09-13$$d2021-09-16$$eHybrid-OA$$jZahlung erfolgt$$z1750 USD / Belegnr. 1200171419
000894955 909CO $$ooai:juser.fz-juelich.de:894955$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180791$$aForschungszentrum Jülich$$b1$$kFZJ
000894955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b2$$kFZJ
000894955 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000894955 9141_ $$y2021
000894955 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894955 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000894955 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000894955 920__ $$lyes
000894955 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000894955 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000894955 980__ $$ajournal
000894955 980__ $$aVDB
000894955 980__ $$aUNRESTRICTED
000894955 980__ $$aI:(DE-Juel1)IAS-5-20120330
000894955 980__ $$aI:(DE-Juel1)INM-9-20140121
000894955 980__ $$aAPC
000894955 9801_ $$aAPC
000894955 9801_ $$aFullTexts