000894956 001__ 894956
000894956 005__ 20240711113729.0
000894956 0247_ $$2doi$$a10.1016/j.nme.2021.101046
000894956 0247_ $$2Handle$$a2128/28633
000894956 0247_ $$2altmetric$$aaltmetric:111888517
000894956 0247_ $$2WOS$$aWOS:000691545700008
000894956 037__ $$aFZJ-2021-03497
000894956 082__ $$a624
000894956 1001_ $$0P:(DE-Juel1)171293$$aDorow-Gerspach, D.$$b0$$eCorresponding author
000894956 245__ $$aAdditive manufacturing of high density pure tungsten by electron beam melting
000894956 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000894956 3367_ $$2DRIVER$$aarticle
000894956 3367_ $$2DataCite$$aOutput Types/Journal article
000894956 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648536637_18934
000894956 3367_ $$2BibTeX$$aARTICLE
000894956 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894956 3367_ $$00$$2EndNote$$aJournal Article
000894956 520__ $$aTungsten is an outstanding material and due to its properties like highest melting point and tensile strength of all natural metals and its high thermal conductivity it is a prime candidate for being used in very harsh environments and for challenging applications like X-ray tubes or as plasma facing material (PFM) in fusion reactors. Unfortunately, high brittle to ductile transition temperature and hardness represent a great challenge for classic manufacturing processes. Additive manufacturing (AM) of tungsten could overcome these limitations and resulting design restrictions. However, AM of tungsten also poses challenges in particular related to the production of material of high density and mechanical stability. Using a selective electron beam melting and a base temperature of 1000 °C of the powder, we were able to produce tungsten with a theoretical density of 99 % without the need of any post-treatment like a second melting step or a redensification by e.g. hot isostatic pressing (HIP). The surface morphology, microstructure, hardness, thermal conductivity and stability against severe transient heat loads were investigated with respect to the relevant building parameters and compared with recrystallized standard W. Besides simple test geometries also more sophisticated ones like monoblocks were successfully realized illustrating the potential of AM for fusion.
000894956 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000894956 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894956 7001_ $$0P:(DE-HGF)0$$aKirchner, A.$$b1
000894956 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b2
000894956 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b3
000894956 7001_ $$0P:(DE-HGF)0$$aWeißgärber, T.$$b4
000894956 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b5$$ufzj
000894956 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2021.101046$$gVol. 28, p. 101046 -$$p101046 -$$tNuclear materials and energy$$v28$$x2352-1791$$y2021
000894956 8564_ $$uhttps://juser.fz-juelich.de/record/894956/files/1-s2.0-S2352179121001174-main.pdf$$yOpenAccess
000894956 8564_ $$uhttps://juser.fz-juelich.de/record/894956/files/postprint_Dorowgerspach_Additive%20manufacturing%20of%20high.pdf$$yOpenAccess
000894956 909CO $$ooai:juser.fz-juelich.de:894956$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171293$$aForschungszentrum Jülich$$b0$$kFZJ
000894956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b2$$kFZJ
000894956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b3$$kFZJ
000894956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b5$$kFZJ
000894956 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000894956 9141_ $$y2021
000894956 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000894956 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000894956 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894956 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000894956 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000894956 920__ $$lyes
000894956 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000894956 9801_ $$aFullTexts
000894956 980__ $$ajournal
000894956 980__ $$aVDB
000894956 980__ $$aI:(DE-Juel1)IEK-4-20101013
000894956 980__ $$aUNRESTRICTED
000894956 981__ $$aI:(DE-Juel1)IFN-1-20101013