000894959 001__ 894959
000894959 005__ 20220126143614.0
000894959 0247_ $$2doi$$a10.1109/JEDS.2021.3095389
000894959 0247_ $$2Handle$$a2128/28640
000894959 0247_ $$2WOS$$aWOS:000673622400001
000894959 037__ $$aFZJ-2021-03500
000894959 082__ $$a621.3
000894959 1001_ $$0P:(DE-HGF)0$$avon Witzleben, M.$$b0$$eCorresponding author
000894959 245__ $$aDetermining the Electrical Charging Speed Limit of ReRAM Devices
000894959 260__ $$a[New York, NY]$$bIEEE$$c2021
000894959 3367_ $$2DRIVER$$aarticle
000894959 3367_ $$2DataCite$$aOutput Types/Journal article
000894959 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643199546_8201
000894959 3367_ $$2BibTeX$$aARTICLE
000894959 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894959 3367_ $$00$$2EndNote$$aJournal Article
000894959 520__ $$aRedox-based random-access memory (ReRAM) has the potential to successfully address the technological barriers that today’s memory technologies face. One of its promising features is its fast switching speed down to 50 ps. Identifying the limiting process of the switching speed is, however, difficult. At sub-nanosecond timescales three candidates are being discussed: An intrinsic limitation, being the migration of mobile donor ions, e.g., oxygen vacancies, the heating time, and its electrical charging time. Usually, coplanar waveguides (CPW) are used to bring the electrical stimuli to the device. Based on the data of previous publications, we show, that the rise time of the effective electrical stimulus is mainly responsible for limiting the switching speed at the sub-nanosecond timescale. For this purpose, frequency domain measurements up to 40 GHz were conducted on three Pt\TaO x \Ta devices with different sizes. By multiplying the obtained scattering parameters of these devices with the Fourier transform of the incoming signal, and building the inverse Fourier transform of this product, the voltage at the ReRAM device can be determined. Finally, the rise time of the voltage at the ReRAM device is calculated, which is a measure to the electrical charging time. It was shown that this rise time amounts to 2.5 ns for the largest device, which is significantly slower than the pulse generator’s rise time. Reducing the device’s rise time down to 66 ps is possible, but requires smaller features sizes and other optimizations, which we summarize in this paper.
000894959 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000894959 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000894959 536__ $$0G:(DE-82)BMBF-16ES1134$$aBMBF-16ES1134 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC - (BMBF-16ES1134)$$cBMBF-16ES1134$$x2
000894959 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894959 7001_ $$0P:(DE-HGF)0$$aWalfort, S.$$b1
000894959 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2
000894959 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3$$ufzj
000894959 7001_ $$0P:(DE-HGF)0$$aBottger, U.$$b4
000894959 773__ $$0PERI:(DE-600)2696552-5$$a10.1109/JEDS.2021.3095389$$gVol. 9, p. 667 - 678$$p667 - 678$$tIEEE journal of the Electron Devices Society$$v9$$x2168-6734$$y2021
000894959 8564_ $$uhttps://juser.fz-juelich.de/record/894959/files/Determining_the_Electrical_Charging_Speed_Limit_of_ReRAM_Devices-1.pdf$$yOpenAccess
000894959 909CO $$ooai:juser.fz-juelich.de:894959$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000894959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b2$$kFZJ
000894959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b3$$kFZJ
000894959 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000894959 9141_ $$y2021
000894959 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-30
000894959 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894959 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J ELECTRON DEVI : 2019$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894959 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000894959 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000894959 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000894959 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000894959 980__ $$ajournal
000894959 980__ $$aVDB
000894959 980__ $$aI:(DE-Juel1)PGI-7-20110106
000894959 980__ $$aI:(DE-82)080009_20140620
000894959 980__ $$aUNRESTRICTED
000894959 9801_ $$aFullTexts